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Abstract. The problem of the frictional mechanical contact with slip and stick, also referred to 

as the Cattaneo-Mindlin problem, is an important topic in engineering, with applications in the 

modeling of particle-flow simulations or in the study of contact between rough surfaces. In the 

frame of Linear Theory of Elasticity, accurate description of the slip-stick contact can only be 

achieved numerically, due to mutual interaction between normal and shear contact tractions. 

Additional difficulties arise when considering a viscoelastic constitutive law, as the mechanical 

response of the contacting materials depends explicitly on time. To overcome this obstacle, an 

existing algorithm for the purely elastic slip-stick contact is coupled with a semi-analytical 

method for viscoelastic displacement computation. The main advantage of this approach is that 

the contact model can be divided in subunits having the same structure as that of the purely 

elastic frictionless contact model, for which a well-established solution is readily available. In 

each time step, the contact solver assesses the contact area, the pressure distribution, the stick 

area and the shear tractions that satisfy the contact compatibility conditions and the static force 

equilibrium in both normal and tangential directions. A temporal discretization of the 

simulation windows assures that the memory effect, specific to both viscoelasticity and friction 

as a path-dependent processes, is properly replicated.  

1.  Introduction 

The tribological contacts in industrial mechanisms undergo oscillating tangential displacements, 

leading to a dramatic decrease of service lifetime of the contacting machine elements by fretting wear 

and fretting fatigue. From a mechanical point of view, the Cattaneo-Mindlin problem is treated in the 

frame of Contact Mechanics by incorporating the Linear Theory of Elasticity, but derivation of a 

closed-form solution is impeded by the coupling between normal and tangential effects [1]. The 

problem model becomes even more complicated by integration of viscoelasticity, due to introduction 

of time as a new parameter. With complete analytical solutions lacking in both elasticity and 

viscoelasticity, a numerical study is expected to advance the understanding of the slip-stick contact 

and to provide assistance to the design of machine elements with improved load-carrying capacity.  

The method employed in this paper is referred in the literature as semi-analytical (SAM) [2], and 

its strong point is that domain discretization is limited to a surface region of the contacting body, as 

opposed to finite element analysis (FEA), in which the meshing of the entire bulk is required. This 
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translates to a dramatic increase in computational efficiency. It is asserted in [2] that SAM can be 

employed to solve a three-dimensional contact problem with the computational resources required in 

FEA for a two-dimensional contact process. 

The treatment of slip-stick contact problems using SAM originated in the work of Gallego, Nélias 

and Jacq [3], who solved repeatedly the contact model in the normal direction while accounting for the 

change in conformity due to wear. Chen and Wang [4] advanced a numerical model for the partial slip 

non-conforming contact considering tangential tractions. This model was later extended in [5], by 

considering a supplementary torsional moment, and in [6], by including the heterogeneity of elastic 

layered half-spaces. Further iterations proved the necessity of incremental load application due to the 

irreversibility of friction as a dissipative process, as reported by Gallego, Nélias and Deyber [7], and 

by Spinu and Glovnea [8]. The study of the memory effect in the fretting contact between dissimilarly 

elastic materials was conducted by Spinu and Frunza [9]. 

Application of SAM to viscoelastic contact problems is more recent, and results are restricted to 

frictionless contact scenarios. The indentation of a viscoelastic half-space using the Matrix Inversion 

Method was investigated in [10]. A robust semi-analytical method for contact modelling of polymer-

based materials was proposed in [11]. The multi-indentation of a viscoelastic half-space by rigid 

bodies using a two-scale iterative method was analysed in [12]. More recently, Spinu [13] advanced an 

improved algorithm for the simulation of frictionless contact problems.  

The main goal of this paper is to extend the SAM-based elastic contact model to viscoelastic 

materials. To this end, existing algorithms for the Cattaneo-Mindlin problem and for viscoelastic 

displacement computation are adapted and combined in an incremental iterative process, aiming to 

accurately reproduce the frictional contact process. The use of state-of-the-art numerical tools allows 

implementation of fine spatial and temporal meshes, resulting in well-converged numerical solutions. 

2.  The contact model 

The main difficulty in solving the contact problem consist in the fact that neither the contact area, nor 

the stick area, nor the contact tractions are known in advance. A trial-and-error approach is 

implemented since the work of [14], but the resulting iterative process infer integration of arbitrary 

functions (contact tractions distributions) over irregular domains (contact or stick area). As this cannot 

generally be performed analytically, numerical integration assisted by influence coefficients is 

preferred. The basic principles of contact problem discretization are briefly discussed in this section.  

The initial composite contact geometry 
1 2( , )hi x x  is conveniently described in a Cartezian 

coordinate systems having its 1x  and 
2x -axes contained in the common plane of contact (i.e. the plane 

passing through the first point of contact, chosen as to separate best the bounding surfaces). The 

direction of the 
3x -axis will be referred to as the normal direction, while the other two are tangential 

directions. Forces and moments transmitted through the contact have components along all three axes: 

the normal force W , the tangential force 1 2( , )T TT , the bending (or flexing) moments 1 2,M M  and the 

torsional moment 3M . Under load, the contacting bodies deform unless assumed rigid, exhibiting 

relative viscoelastic displacements iu , and move relative to each other as rigid-bodies with translations 

i  and rotations i , with 1,2,3i  . Once a non-vanishing contact area A is established, contact 

tractions occur, i.e. pressure p  in the normal direction and shear traction 1 2( , )q qq  in the tangential 

direction. The works of Cattaneo [15] and Mindlin [16] prove that the full-sticking contact cannot be 

solved in the Frame of Linear Theory of Elasticity, as it leads to infinite stresses at the boundary of the 

contact area. The full-slip contact is trivial, as shear tractions are related to pressure through 

Coulomb’s law on all contact area. The main goal of this work is the study of the partial slip (i.e. slip-

stick) contact, in which the contacting bodies are globally sticking due to a stick area S , but a 

peripheral region of slip occurs to release the otherwise infinite tractions on the contact boundary. In 

the problem model,   is the frictional coefficient, A S  the slip region, and 1 2( , )s ss  the relative slip 

distances, as discussed in [17]. 
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The SAM-based resolution of the slip-stick contact problem relies on considering continuous 

distributions as piecewise constant over a rectangular mesh P established in the common plane of 

contact, enclosing the contact area at any moment in the loading history. Only a small surface domain 

(i.e. the contact vicinity) of the contacting bodies needs to be meshed. It is convenient to align the 

directions of the grid sides with those of the Cartesian coordinate system. The elementary cell area 

1 2     depends on the grid steps 
i  in the direction of 

ix , 1,2i  . The grid control points, i.e. the 

centres of the resulting rectangular patches, are indexed by a pair of indices ( , )i j , with 
11 i N   and 

21 i N  . Any continuous distribution is approximated by a series of discrete values computed in the 

control points. This spatial discretization is competent in purely elastic contact problems, but it cannot 

handle by itself path-dependent processes, like friction. The latter cases require incremental load 

application, as described in [7]; however, the time parameter needs not be explicitly considered. 

Simulation of the viscoelastic contact process, on the other hand, require the time parameter to be 

unequivocally included, as the mechanical response of the viscoelastic material depend explicitly on 

time. A uniform temporal mesh of step 
t , with 

tN  time steps, completes the problem model, adding 

a third argument to all problem parameters, e.g. ( , , )p i j k  is the discrete counterpart of 
1 2( , , )p x x t   , 

with 
1 1x i   , 

2 2x j   , 
tt k   , and denotes the elementary pressure in the cell ( , )i j  of the spatial 

mesh, achieved after k  time steps. Parameters having two arguments depend only on spatial 

localization, while those with one argument depend only on time. 

In this framework, the contact model can be subdivided into two components that have the same 

structure and consequently can be solved using the same type of algorithm. However, as shown in the 

next sections, the two submodels cannot be solved independently, but rather stabilized one with 

respect to the other in an iterative approach. The normal contact (NC) submodel consists in equations 

(1), (3) and (5), describing the contact behavior in the normal direction, while the tangential contact 

(TC) submodel comprises equations (2), (4) and (6) for the tangential direction:  

1. The static force and moment equilibrium: 

1 2 2 1

( , ) ( ) ( , ) ( ) ( , ) ( )

( ) ( , , ); ( ) ( , , ) ( , ); ( ) ( , , ) ( , )
i j A k i j A k i j A k

W k p i j k M k p i j k x i j M k p i j k x i j
  

        ; (1) 

 3 2 1 1 2

( , ) ( ) ( , ) ( )

( ) ( , , ), 1,2; ( ) ( , , ) ( , ) ( , , ) ( , )n n

i j A k i j A k

T k q i j k n M k q i j k x i j q i j k x i j
 

       . (2) 

2. The geometrical condition of deformation: 

 3 3 1 2 2 1( , , ) ( , ) ( , , ) ( ) ( ) ( , ) ( ) ( , ), ( , )h i j k hi i j u i j k k k x i j k x i j i j P        ; (3) 

 

 

1 1 1 1 1 1

2 2 2 2 2 2

2

3 3

1

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

( , )
                  ( ) ( 1) , ( , ) ( ).

( , )

s i j k s i j k u i j k u i j k k k

s i j k s i j k u i j k u i j k k k

x i j
k k i j A k

x i j

 

 

 

          
       

          

 
   

 

 (4) 

3. The contact complementarity conditions: 

 
( , , ) 0 and ( , , ) 0, ( , ) ( );

( , , ) 0 and ( , , ) 0, ( , ) ( );

p i j k h i j k i j A k

p i j k h i j k i j P A k

  


   
 (5) 

 
( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( );

( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( ) ( ).

i j k p i j k i j k i j k i j S k

i j k p i j k i j k i j k i j A k S k





     


     

q s s

q s s
 (6) 
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3.  Viscoelastic displacement computation 

A semi-analytical method for computation of normal displacement in linear viscoelastic materials was 

recently advanced by Spinu and Gradinaru [18]. As shown by the geometrical condition of 

deformation (3) and (4), assessment of displacement field induced in the viscoelastic material by an 

arbitrary history of surface tractions in a contact process is essential in solving the contact problem. By 

adopting the assumption of linearity in viscoelastic response (reasonable in the frame of small strain 

theory), the use of Boltzmann superposition theory is authorized, allowing displacement to be obtained 

as the superposition of a series of small changes in contact tractions, i.e. ( , , ) ( , , 1)p i j k p i j k   and 

( , , ) ( , , 1)i j k i j k q q . By extending the formula derived in [18], the linear viscoelastic displacement 

induced by an arbitrary, yet known, history of distributions of contact tractions, both normal and shear, 

results as: 

1 11 12 13

2 21 22 23

3 31 32 33

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

u i j k KV i j m k n KV i j m k n KV i j m k n

u i j k KV i j m k n KV i j m k n KV i j m k n

u i j k KV i j m k n KV i j m k n KV i j m k n

           
   

         
   
              

1 2

1 1 1

1 1

2 2

( , , ) ( , , 1)

                          ( , , ) ( , , 1) , where

( , , ) ( , , 1)

tN N N

n m

q m n q m n

q m n q m n

p m n p m n

  





  
 

 
 
   



 (7) 

 

(2) (1) (2) (1) (2) (1)

11 12 13 11 11 12 12 13 13

(2) (1) (2) (1) (2) (1)

21 22 23 21 21 22 22 23 23

(2) (1) (2) (1) (2) (1)

31 32 33 31 31 32 32 33 33

KV KV KV KV KV KV KV KV KV

KV KV KV KV KV KV KV KV KV

KV KV KV KV KV KV KV KV KV

    
  

     
        

. (8) 

Here, ( ) ( , , )KV i j m k n

     denotes the viscoelastic influence coefficient, expressing the 

displacement in the direction of x , induced in the elementary patch ( , )i j  of the body  , at the time 

step k , by a uniform contact traction of 1 21 ( )   Pa that acted in the patch ( , )m , along direction of 

x , in the n
th
 time step, with n k , , 1,2,3   , and 1,2  . As shown in [18], the viscoelastic 

influence coefficient ( )KV 

  can be derived based on its elastic counterpart ( )K 

 : 

  ( ) ( ) ( ) 1 ( ) ( )( , , ) (1 ) ( ) ( , )tKV i j m k n E k n K i j m    

            ,  (9) 

where ( )E  , ( )  and ( ) ( )t  are the Young modulus, the Poisson’s ratio and the creep compliance 

function of the contacting body  , respectively, with 1,2   and , 1,2,3   . The viscoelastic 

influence coefficient was essentially obtained by replacing the elastic modulus in the elastic influence 

coefficient with the viscoelastic creep compliance, as detailed in [18]. The derivation of the purely 

elastic influence coefficients for frictional contact problems is discussed in detail elsewhere [19]. 

4.  Algorithm description 

The difficulty in achieving an analytical solution to the Cattaneo-Mindlin problem for viscoelastic 

materials stems from three facts. Firstly, the contact area, as well as the slip / stick boundary, is a 

priori unknown and keep changing with time in the course of the contact process. Secondly, the NC 

and the TC cannot be solved independently, as the displacement fields entering the geometrical 

conditions of deformation (3) and (4) result by superposing the contributions of both normal and shear 

tractions. In other words, solution of the NC is required to solve the TC and vice versa. Thirdly, the 

slip-stick contact simulation relies on contact evolution in the past period of time. Indeed, computation 

of surface normal or tangential displacement is based on both normal and shear tractions developed 
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during the contact process. To overcome each of these obstacles, an additional level of iteration is 

implemented, resulting in a three level nested loop.  

The innermost loop will be referred to as the uncoupled contact problem, which can be in the 

normal (UNC) of in the tangential (UTC) direction. The intermediate loop iterates between the UNC 

and the UTC to obtain the instantaneous contact state (IC), namely the solution that couples the UNC 

and the UTC. The outer loop replicates the viscoelastic slip-stick contact process by computing a 

series of ICs at each increment in the temporal mesh. A similar type of three-level iteration was 

implemented by Spinu and Glovnea [8] in the study of slip-stick elastic contact, therefore only the 

novelty features will be detailed in this paper.  

By integrating the viscoelastic constitutive law into the slip-stick contact model, replication of the 

process path by incremental load application alone is no longer possible. Indeed, in the purely elastic 

slip-stick contact, no parameter depends explicitly on time, and the path-dependent frictional process 

is accurately reproduced as long as the tangential load is applied in sufficiently small increments. The 

outcome of the elastic slip-stick contact is independent of the simulation time window, as the response 

of the contacting material appears to be time-independent on condition that load varies slowly. As 

opposed to the viscoelastic case, when the stress and strain state in the contacting bodies depend not 

only on the past evolution of the load, but also on the time interval in which the loading program was 

applied. In other words, the time increments in the outer level of discretization should be small enough 

to assure not only that the tangential load is applied in small steps (as required by the path-dependent 

frictional process), but also that the mechanical response of the viscoelastic body does not vary 

significantly from one time increment to another.  

From this point forward, the spatial localization of displacement will be omitted for brevity. The 

displacement in the thk  time increment results as the contribution of the current and past contact 

tractions, both normal and shear, all unknown, i.e. ( ) ( (1),..., ( ), (1),..., ( ))k p p k ku u q q ; whereas, 

based on the state-of-the-art in computational contact mechanics, we can only solve the uncoupled 

contact problems with just one unknown contact traction, i.e. either when ( ) ( ( ))k p ku u , or when 

( ) ( (k))k u u q . The problem solution is achieved in this paper by means of three iterative levels. At 

the intermediate level (previously referred to as an IC), the historical contact tractions are assumed 

known, and therefore the only unknowns are the current tractions, i.e. ( ) ( ( ), (k))k p ku u q . At the 

inner loop level, also referred to as uncoupled contact model, only one unknown is kept, i.e. 

( ) ( ( ))k p ku u  in the UNC and ( ) ( (k))k u u q  in the UTC. 

Once a contact traction is assumed known in the contact solver, its contribution to the displacement 

field can be superimposed in the geometrical conditions of deformation (3) and (4) to the initial 

contact geometry, resulting in a modified initial state. The main advantage of this approach is that the 

resulting contact model preserves the same structure as the purely elastic frictionless contact model, 

for which a well-established numerical solution is readily available [20]. It was shown [8] that the 

latter type of algorithm can be used to solve either the UNC or the UTC. Its description is omitted in 

this paper for brevity. 

The algorithm steps for the intermediate loop (i.e. the solution of the IC) are detailed below. 

1. Acquire the historical contact tractions: (1),..., ( 1), (1),..., ( 1)p p k k q q . 

2. Adopt the initial guess for the shear contact tractions: ( ) ( 1)k k q q . A vanishing increment 

can also be assumed, but results in slower convergence. 

3. Compute the contribution of (1),..., ( 1), (1),..., ( )p p k k q q  to displacement and superimpose it to 

the initial state in the UNC. 

4. Solve the UNC with only one unknown traction: ( ) ( ( ))k p ku u . Obtain ( )p k . 

5. Memorize ( )p k  for subsequent error estimation: ( ) ( )oldp k p k . 

6. Compute the contribution of (1),..., ( ), (1),..., ( 1)p p k k q q  to displacement and superimpose it to 

the initial state in the UTC. 
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7. Solve the UTC with only one unknown traction: ( ) ( ( ))k ku u q . Obtain a better approximation 

for the shear tractions ( )kq  than the one assumed in step 2. 

8. Obtain the next iteration for the normal tractions ( )p k  by rerunning steps 3 and 4 with the 

newly computed shear tractions ( )kq . 

9. Verify convergence by comparing ( )p k  to ( )oldp k . If these pressure distributions vary within an 

imposed precision with respect to the applied normal load, stop algorithm execution and export data. If 

not, resume from step 5 to perform a new iteration. 

In this manner, the UNC and the UTC are solved successively, generating new iterations of ( )p k  

and of ( )kq , which converge to the solution of the IC, i.e. the couple  ( ), ( )p k kq  that verifies both 

the UNC and the UTC simultaneously. 

The simulation of the viscoelastic contact process by means of a series of instantaneous contact 

states is achieved in the outer loop, which consists in the following steps: 

1. Solve an initial UNC to get the pressure at the beginning of the loading process (1)p . It should 

be noted that in the Cattaneo-Mindlin problem, the normal load is applied first, and the tangential load 

acts after the contact area is established. 

2. Apply the tangential load in the time step k  and solve the current IC to get ( )p k  and ( )kq . 

3. Increase k . If the end of the simulation window is reached (i.e. 
tk N  ), export data, if not, 

resume algorithm execution from step 2. 

5.  Results and discussions 

The newly proposed algorithm is firstly validated by comparison with the closed-form solution 

detailed in [17] for the purely elastic spherical contact undergoing a fretting loop. The results are then 

extended by simulating the indentation of a Maxwell viscoelastic half-space by a rigid sphere. The 

Maxwell rheological model consists in a spring of shear modulus G  in series with a dashpot of 

viscosity  . The creep compliance function of the Maxwell half-space is ( ) 1 (2 )(1 )t G t t   , 

where t G   denotes the relaxation time, namely the time it takes for stress to decay by a factor 

equal to the Euler’s number. 

During a fretting contact process, it is expected that friction vary on the contact area, as well as 

with accumulation of debris particles resulted from additional wear. However, for validation purposes, 

a frictional coefficient 0.1  , uniform over all contact area and constant during load application, is 

assumed in this study. The proposed numerical method can equally handle mapped distributions of  . 

A steel ball of radius 18R  mm is pressed against an elastic half-space having the same elastic 

properties, in a step loading with a normal force 1W  kN. A tangential force T , varying linearly with 

time between two limiting values limT  and limT , where lim 0.9T W , is subsequently applied. The 

loading history for the elastic or the viscoelastic fretting processes is depicted in figure 1, with 

dimensionless time defined as ratio to the length of the simulation window   and with 0t  s the 

moment of the first loading. The length of the simulation window is varied with respect to the 

relaxation time of the Maxwell rheological model. The Hertz frictionless theory for this contact 

scenario predicts a central pressure 1.996 GPaHp   and a contact radius 0.489 mmHa  . In figures 2  

and 3, dimensionless contact tractions are defined as ratio to Hp , and dimensionless radial coordinate 

as ratio to Ha .  

In the elastic case (figure 2), the pressure is constant and the shear contact tractions depend only on 

the dimensionless time, whereas, in the viscoelastic case, pressure not only varies with dimensionless 

time, but it is also influenced by the relaxation time of the viscoelastic rheological model. The length 

of the simulation window has a noticeable influence on both normal and shear contact tractions, as 

resulting from comparison of distributions depicted in figure 3(a) and (b). 
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Figure 1. The loading history.  Figure 2. Program validation by simulation of a fretting 

loop in a purely elastic contact. The closed-form solution 

[17] used for comparison is displayed using grey lines. 
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Figure 3. Contact tractions in the viscoelastic contact: (a) t  , (b) 2t  . 
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6.  Conclusions 

The numerical solution of the Cattaneo-Mindlin problem for materials with dissimilar elastic 

responses is extended to allow for linear viscoelastic behavior. Beside the spatial discretization 

specific to elastic contact problems, a temporal discretization of the simulation window is 

implemented, with time steps sufficiently short so that the tangential load level and the material 

response can be assumed constant in each step. This discrete model assures the computation of 

viscoelastic displacement by superposing the contributions of contact tractions in all past intervals. 

The newly proposed algorithm is based on three level of iterations. The inner level solves the 

normal or the tangential instantaneous contact state at each time increment, i.e. the uncoupled contact 

problems in the normal or in the tangential direction. The intermediate level iterates between the 

normal and the tangential instantaneous contact tractions, stabilizing one with respect to the other and 

thus coupling the normal and the tangential contact models. The outer level superpose the contribution 

of all past increments, thus simulating the memory effect specific to both viscoelasticity and friction. 

Due to its generality, this novel method is expected to provide assistance to the design of 

competent tribological components for practical engineering applications involving viscoelastic 

materials and interfacial friction. 
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