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Abstract. This paper focuses on deoxidation of titanium alloys produced by aluminothermic
reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting
(VIM). The main goal of the performed research work is to outline the deoxidation limit during
pressure electro slag remelting (PESR) of the described material.

To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and
afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia
(pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order
to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was
noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and
alloying elements were analysed by XRF.

Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in
calcium-zirconate crucibles and approx. 1 — 1.2 wt.-% for the material produced by utilization
of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale
electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic
calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated
material is possible applying this method to a certain limit. Pilot scale trials showed a reduction
of oxygen contents by 1500 — 3500 ppm. Oxygen levels in lab scale trials showed weaker
deoxidation effects.

In order to describe the achieved deoxidation effects in a quantitative way, the analyzed
oxygen contents of the obtained ingots are compared with calculated data resulting from a
mathematical kinetic model. The modelled datasets are in good agreement with experimental
oxygen values.

1. Introduction

Titanium and its alloys combine several attractive properties such as high strength, low density,
corrosion resistance and excellent biocompatibility. Despite these characteristics, the wider application
of titanium and titanium alloys is limited due to the high manufacturing costs.

Therefore, since approximately 10 years the IME, RWTH Aachen University, is working on the
application of a new synthesis and recycling process route for titanium alloys with special regard on
decreasing the level of oxygen due to its negative influence on the ductility. Detailed investigations on
each process step were performed by Lochbichler [1] Stoephasius [2], and Reitz [3]. An important
aspect of the process route is to resort to conventional and established metallurgical processes such as
Vacuum Induction Melting (VIM), Electroslag Remelting (ESR) or Vacuum Arc Remelting (VAR).
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According to the type of material (scrap, raw materials) and the composition, different process steps
are combined to achieve the desired product quality. Main principle to control the oxygen level is the
introduction of metallic calcium to the liquid slag or melt as a deoxidant. Especially for the material
class of y -TiAl it could be shown, that deoxidation of these alloys from investment casting scraps
during ESR is feasible resulting in final oxygen contents below 500 ppm in the product [3]. The
research presented in this paper focuses on an alternative process route for Ti6AI4V alloys with
special regard on the PESR deoxidation.

2. Fundamentals

One of the most challenging tasks in the refining process of titanium alloys is the removal of
oxygen present in titanium as dissolved TiO. Besides the high stability of TiO (AG; = -357 kj/mol @
1750°C) also the oxygen solubility of up to 33 at% in the system Ti-O indicates that the removal is
difficult. The deoxidation by vacuum distillation is not feasible due to the necessary oxygen partial
pressure in the furnace atmosphere (p, < 10"?° bar for 1000ppm in a cp-Ti melt) which is so low, that
even present oxygen from the gas phase will be nearly fully dissolved. Thus, the use of deoxidation
agents becomes evident.

Regarding the Vacuum Induction Melting of titanium and titanium alloys, the choice of the refractory
material is crucial. According to standard Gibbs free energy calculations of oxides, only CaO, Y,0;
and ZrO, seem to be sufficiently stable against titanium, whereas CaO should be most stable.
Tsukihashi et al. [4] investigated the calcium and oxygen uptake in c.p. titanium and TiAl melts in
equilibrium with solid CaO. The experiments were conducted in a closed system by using a lid to
avoid Ca evaporation. His research shows, that the reaction according to (1) is causal between for the
equilibrium between calcium and oxygen in titanium melts, which depends strongly on temperature.

[4] [5]
[TiO]+i + [Ca]yi = [CaOlsiaq + Ti (1)
[A]g: A dissolved in B

Unfortunately, Tsukihashis results do not allow a prediction of the reachable final oxygen contents in
the melt during ESR since the distribution coefficient between calcium in the metal and calcium in the
slag is not known. Extending Tsukihashis work, Okabe et al. [6] equiblirated Ti melts with CaO and
Ca (aca = acao = 1) and calculated the activity coeffictient frijo. Based on this work, Stoephasius et al.
[5] calculated the deoxidation limits of Ti and TiAl melts with metallic calcium as deoxidant. Since
during electroslag remelting, instead of pure CaO a CaF,-(CaO) slag (with metallic Ca as deoxidant) is
used, the CaO activity is decreased. Therefore, from a thermodynamic point of view, deoxidation of cp
titanium melts below 2000 ppm oxygen should be possible in general. However, major challenge
during PESR deoxidation of titanium is to achieve a homogeneous oxygen distribution in the whole
ingot. Since the CaO concentration is increasing according to (1) during remelting, the Ca activity has
to be continuously increased during the process for compensation. Furthermore, the CaO-activity can
be decreased by dilution via addition of CaF, to the slag. Figure 1 exhibits that the necessary Ca
content in the slag to reach specification conform oxygen contents is much higher in cp-Ti melts than
in TiAl Thus, because of the high vapour pressure of Ca, this results into difficult handling of high Ti
containing melts.
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Figure 1: Necessary Ca content in the slag in order to achieve specification conform oxygen contents
in titanium and titanium aluminide [5]

3. Experimental
3.1. Masteralloy synthesis by Aluminothermic Reduction (ATR)

The feasibility of aluminothermic reduction (ATR) of TiO, to produce Ti alloys was shown in
previous works [7][8]. The main challenge for the ATR process is to produce Ti alloys with high
titanium and low aluminium content. However, the high oxygen solubility of titanium does not allow
producing Ti alloys with low aluminium and simultaneous low oxygen contents. Because Al is used as
alloying element in many Ti materials, residual Al content in the ATR product can be tolerated. The
inverse correlation of Al and O content in titanium materials is reported to be 6 wt.-% Al at >10 wt.-%
O and 36.-% Al at 1.4 wt.-% O. [9] The typical oxygen content of aluminothermically produced TiAl
material varies between 1.3 and 1.8 wt,-% [7][8]. Therefore, a subsequent deoxidation step has to be
performed for ATR Ti in order to meet the specifications of 2000 ppm. It is of particular interest to
provide aluminothermic reduced titanium for further titanium based alloy production. By co-reduction
of TiO, and other oxides of alloying elements such as vanadium the synthesis of a master alloy is
possible. In this respective, Ti-6Al-4V, representing the most utilized titanium alloy, gets relevant..
For the present research the composition of the master alloy is chosen as Ti with 60 wt.-%, Al with 24
wt.-% and V 16 wt.-%. For the subsequent processing by VIM titanium sponge has to be charged with
a ratio of 3:1.

The reduction of TiO, with aluminium requires further heat input to obtain the reaction self-
propagated. KCIO, is added to the reaction mixture with the required amount of aluminium. For
synthesis of the master alloy, the combined reduction of oxides of titanium and vanadium is
performed. There are different oxides available, such as V,03;, V,04, V,0s and mixtures of theses
oxides whereat V,0s provides the highest enthalpy input. In order to decrease the KCIO, amount and
hereby decreasing Cl-bearing off-gas V,0s is used in every experiment. In order to decrease the
liquidus temperature of the alumina slag, lime is added to the ATR mixture as flux. All input materials
are added in powder form and blended before charging. Experiments on two different scales (20 L &
6kg of product and 90 L = 30 kg) are performed in the present work. The initial ignition is carried out
by a filament on top of the input mixture in all trials. After reaction, the produced metal ingot is
analyzed with respect to total oxygen as well as base elements. The ingot is cleaned from residual slag
attached to the surface and crushed for the subsequent processing steps.
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The cross sections of the ATR products are shown in Figure 2. It can be seen, that a weak segregation
occurred in the small scale trail in the middle of metal ingot wherein the melt solidifies at last. On a
macroscopic scale, there are no porosities observed within the metal products.
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Figure 2: Cross Section of small sae (left) and large scale (right) ATR products

3.2. Electrode production by Vacuum Induction Melting (VIM)

Consolidation, alloying and electrode production were carried out in a 40kW and 150kW vacuum
induction furnace at IME. The crucibles used for melting were made of CaZrO; (lab scale) or CaO
(pilot scale) refractory material. Properties of the CaZrO; crucibles are described elsewhere [10]. At
the beginning of each vacuum induction only the ATR material is charged into the crucible. Titanium
sponge (ratio 3 Ti: 1 ATR) is added subsequently using a charging system after obtaining a melt in
order to keep the titanium activity as low as possible at any time to minimize crucible-melt reactions.
During melting, strong evaporation of calcium can be noticed. The melt is hold at a temperature of
1750 °C for 10 min to obtain a good homogenization. Afterwards, the melt is tapped in a water cooled
copper mould with a diameter of 50mm and 100mm respectively

After cooling and stripping, the cast ingot is analyzed for oxygen using inert gas fusion method, matrix
and alloying elements were analyzed by XRF. Figure 3 shows the cast electrodes.

sl BEs N HGNEEE R ARG S SRR RN TR L

Figure 3: Obtained Electrode after pilot scale VIM, top: lab scale, bottom: pilot scale
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3.3. Final Deoxidation by (Pressure) Electroslag Remelting (PESR)
3.3.1. Lab Scale

Remelting of the lab scale electrodes was performed in a chamber electroslag furnace (ChESR) at
Donetsk National Technical University (DonNTU), Ukraine with a maximum operating power of
724kW. The furnace is equipped with a water cooled copper crucible (70 mm diameter, 425 length)
and a Chamber for operating under shield gas at slight overpressure. Before remelting, the crucible is
filled with 700 g technically pure CaF, and calcium granules for deoxidation, which were pressed to a
tablet. The calcium content varies from 4 to 8 wt.-% of the total slag mass depending on the trial. After
this, the chamber is evacuated and backfilled with Argon (99.987%). Starting of the process is
performed by arcing between the electrode and calcium tablet. Process control is done by manual
adjustment of the current, which is kept by approx. 3 kA. During remelting, the gas pressure in the
chamber is maintained at 0.3 -0.4 atm. above atmosphere. The process time varies from 130 to 250 s
depending on the electrode length. After cooling, the ingot (Figure 4) is analyzed by OES for metals
and inert gas fusion for dissolved oxygen.

TN s b A
AR - '}1" . % = - ._-M.
re (left) and after (right) slag skin removal

Figure 4: Obtained ingots after éléctroslag remelting befo

3.3.2. Pilot Scale

The experiments for pilot scale deoxidation were performed in the IME pressure electroslag
remelting furnace. The furnace is equipped with a charging system, which allows the continuous
feeding of additives into the melt during the process at all operating pressures and with adjustable
speed. Before the furnace is closed, the electrode is connected to the electrode rod with a titanium
stub. A starting plate made of Ti-50Al sputter targets is placed on the crucible bottom to ensure
electrical contact during the starting phase of the process. Afterwards, the crucible is filled with 4-
4.5 kg of preheated (15h @ 650 °C) process slag that consists of the technically pure CaF, slag
Wacker Electroflux 2052 (> 97 wt.-% CaF,) as well as 225-300 g of metallic calcium depending on
the trial. The bunkers of the feeding system are filled with a CaF,-Ca mixture (ratio 2:1). The furnace
is closed and, in order to avoid reactions with oxygen from ambient air, the vessel is evacuated to a
pressure of 10™ mbar. Consecutively, the vessel is backfilled with Ar gas to the desired process
pressure of 20 bar to avoid excessive Ca evaporations. During remelting, constant feeding of the CaF,-
Ca mixture was performed in order to compensate Ca-losses and to reduce the CaO activity. After
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remelting and cooling for several hours, the ingot is stripped, the cap-slag and slag skin are removed,
the ingot is sectioned and analyzed by IGF for oxygen.

4. Results and Discussion
4.1. Masteralloy synthesis

EDX-analyses exhibit that present inclusions are mainly alumina based oxide particles, spinel type
particles of alumina and calcia were detected as well. The EDX-results indicate locally strong
variations of the metal composition. The titanium content varies between 51 and 62 wt.-%, Al between
21 and 26 wt.-% and vanadium between 13.6% and 22.4 %. However, the average values for
aluminium and titanium match with the results of the ICP-analysis. The metal product of the small
scale trial results in lower titanium yields and effects hereby a higher amount of aluminium because
not consumed for TiO, reduction.

Table 1 shows the oxygen contents of the obtained master alloys. With respect to the lower titanium
content and higher aluminium content, the lower oxygen amount in the small scale trial is evident and
corresponds with literature data. For further processing, the 6kg batch was used for lab scale VIM
trials (VIM1a-3a), the 30kg batch for pilot scale (VIM1b-3b) melts.

Table 1. Chemical composition of the ATR master alloys (all elements in wt.-%)

Trial Ti Al \% Fe Si O
6 kg batch bal. 31.7 12.6 2.40 0.28 0.78
30 kg batch bal. 22.4 144 1.95 0.73 0.92

%a - lab scale, b — pilot scale

4.2. Vacuum Induction Melting

Table 2 show the concentration of the major elements in the obtained electrodes from lab and pilot
scale tests. Since one lab scale ingot consists of two castings, an oxygen concentration gradient from
top to bottom can be measured. In general, the oxygen pickup when using CaZrOs; crucibles is lower,
which indicate their stability. On the contrary, a Zr enrichment in the metal can be measured. A
detailed description of the CaZrOs-Ti-interaction is given by [10]. Melting in pure lime crucibles leads
to an oxygen increase to approx. 1-1.2 wt.-%. All cast electrodes are further processed in the
electroslag remelting process.

Table 2. Chemical composition of obtained lab- and pilot scale electrodes (all elements in wt.-%)

Trial Ti Al \V Zr Fe Si Oropibottom
VIM 1la 89.77 5.69 2.38 1.36 0.24 0.14 0.70/0.93
VIM 2a 90.97 5.32 212 0.87 0.24 0.11 0.62/0.72
VIM 3a 90.51 4.87 2.47 1.43 0.25 0.12 0.74/0.94
VIM 1b 85.53 9.05 4.61 - 0.36 0.20 1.05
VIM 2b 87.00 8.20 3.91 - 0.32 0.26 1.04
VIM 3b 85.82 8.60 4.48 - 0.36 0.20 1.24

®a - lab scale, b — pilot scale
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4.3. Electroslag deoxidation

Table 3 summarizes the main (P)ESR process parameters, final ingot oxygen concentrations as well as
the deoxidation efficiency. The trial number refers to the VIM electrode used (see Table 2). Regarding
the lab scale trials, the oxygen analyses were performed again in the top and bottom section of the
ingot. As results show, deoxidation could be achieved for each ingot in the bottom part. On the
contrary, the oxygen content in the top part is equal to or higher than in the initial electrode. An
oxygen gradient can be explained by CaO enrichment and Ca loss in the slag. An additional oxygen
uptake cannot be explained entirely by considering only dilution effects between top and bottom.
Here, more trials are necessary. In respect to the pilot scale tests, a clear deoxidation effect for all
Calcium containing trials can be observed. Figure 5 shows the oxygen change after remelting for all
pilot scale tests in detail. The oxygen level is significantly decreased, especially trial number PESR
number 1b shows a clear tendency which indicates a rising Ca activity in the slag during the melt.
Unfortunately, an on-line measurement of the Ca content in the slag is not possible.

The reference melt without Ca-addition shows an oxygen uptake during the whole process which can
be explained by dilution of CaO residues in the slag, as well as the dilution of remaining oxide
residues from the electrode. In general, a clear tendency between the added Calcium/ingot mass ratio
could not be verified and has to be investigated in further trials.

Table 3. Experimental parameter and results of lab- and pilot scale deoxidation trials

Mingot/ melt rate/ mCaFZ/ Castart/ mCa/ Mmet Otop,bottom/ AOaV/

Trial kg kg/min kg wt.-% a/kg wt.-%% wt.-%
ESR 1a 1.38 0.6 700 8.14 44.93 0,7/0,78 0.00/-0.15
ESR 2a 1.57 0.5 700 9.20 50.96  0.78/0.58 +0.16/-0.15
ESR 3a 2.73 0.7 700 8.50 23.81  0.86/0.75 +0.12/-0.19
PESR 1b 27.0 0.6 4500 4.76 14.81 0.73 -0.32
PESR 2b 29.6 0.6 4000 6.98 22.64 0.79 -0.25
PESR 3b 30.6 0.6 4500 0 1.47 1.26 +0.02

%a — lab scale, b — pilot scale (20 bar pressure),
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Figure 5: Deoxidation efficiency in PESR pilot scale tests
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5. Kinetic Model

Fraser [11] investigated various mass transfer aspects of AC ESR of steels (slagging of Mn and
desulphurisation) in a very comprehensive thesis work. The findings of his work can be adapted to the
conditions for the presented case. General assumption for describing the reaction kinetics during ESR
is, that thermochemical equilibrium is only achieved at the metal-slag phase boundary itself, thus it
consequently has to be considered that diffusion of Ca and CaO through a finite layer in the slag and O
through a layer on the metal side respectively could be rate limiting factors.

In Fraser’s model Mn is transported in the metal phase to the phase boundary, is being oxidized by
Fe?* ions from the slag and leaves the reaction zone as Mn*" in the slag. The author solves a set of four
mass-transfer equations in order to obtain a differential equation for the rate of change of Mn
concentration as a function of interfacial area, phase volume, bulk concentration, interfacial
concentration at equilibrium, the equilibrium constant K and all transport coefficients k; in the metal
and slag diffusion layer. The adaption of this set of equations to the change rate of oxygen
concentration in a titanium melt is presented in [12]

All necessary thermochemical and physical data for calculating the transport coefficients and solving
the differential equation was collected from literature or calculated by using different approaches. For
a detailed description please refer to [12]. With the necessary data determined, all parameters were put
together in MS Excel™ spreadsheets to allow for easy scale up scenario calculations of furnace
parameters (e.g. ingot diameter, melt rate), slag and metal composition. The parameters b, ¢ and the
differential equation in (2) were numerically solved independently for the three reaction zones at the
respective boundary conditions and then merged together in order to calculate the change of the slag
composition and the oxygen concentration of the solidifying metal. Based on this principle, the whole
remelting process can be modelled in discrete time steps by recursive recalculation of the oxygen
concentration.

Figure 6 shows the modelling results of trial PESR 1b. The solid line represents the calculated oxygen
content in the melt during the process, the individual data points are oxygen contents in the ingot
determined by chemical analysis. Based on the melt rate, for each process time, a corresponding ingot
height was allocated. In general, the model is in good agreement with the experimental values and thus
indicates a kinetic limit for a deoxidation effect.
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Figure 6: Modelled and experimental oxygen concentrations in the Ti-Al-V ingot (PESR 1b)
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In a previous study [13], the authors presented the deoxidation behavior of a standard Ti-6Al-4V alloy
with 2000 ppm oxygen. ldea was to enforce a quick drop of the oxygen concentration by rapid Ca-
addition to the slag during remelting. Figure 7 shows the obtained results, which predict an oxygen
level increase at the beginning of the process. This can be explained by the CaO in a technically pure
CaF; slag, which dissolves in the metal to a level according to the equilibrium constant K of the
deoxidation reaction. The further oxygen level tend in the metal calculated by the model can be
explained as follows: As the oxygen concentration in the slag reaches its equilibrium state, a dilution
of the solidifying metal takes place as drops from the electrode tip enter the liquid metal pool. This
leads to a continuous decrease of the oxygen level towards the initial value of 2000ppm (Figure 7,
right). The rapid addition of metallic calcium leads to a sharp decrease of oxygen down to 1000 —
1500 ppm. As both figures show, the predicted oxygen trend is mostly confirmed by the experimental
trials. Furthermore, the trials show that PESR deoxidation of Ti6Al4V is possible to values below
1000 ppm.
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Figure 7: Deoxidation behavior of a standard Ti-6Al-4V alloy with 2000 ppm oxygen

6. Conclusions

- Ti-Al-V electrodes containing oxygen contents above specifications were successfully
produced by ATR masteralloy synthesis and subsequent alloying via VIM! in lab scale (CaZrO;
refractory) and pilot scale (pure CaO refractory) to test the deoxidation limits in the following
ESR process

- Deoxidation trials in chamber and pressure ESR units were performed under varying Ca-
contents in the slag

- Deoxidation effects vary significantly over the ingot height in lab scale and cannot be
explained entirely. Since only slight overpressure (+0.4 bar) was set, Ca losses due to
evaporation are possible, since the operating temperature is above the Ca boiling point

- Oxygen levels in PESR trials (20 bars) can be reduced by max. 3500 ppm

- Aclear tendency between the calcium/ingot mass ratio could not be verified. Thus, the process
chain needs more trials for validation and ensuring reproducibility

- A kinetic model is presented which predicts the oxygen concentration as a function of process
time. Modelled and experimental values are in good agreement

- The main challenge remains achieving a homogeneous oxygen level in the whole ingot
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