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Abstract. This paper focuses on deoxidation of titanium alloys produced by aluminothermic 
reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting 
(VIM). The main goal of the performed research work is to outline the deoxidation limit during 
pressure electro slag remelting (PESR) of the described material.   
To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and 
afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia 
(pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order 
to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was 
noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and 
alloying elements were analysed by XRF.   
Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in 
calcium-zirconate crucibles and approx. 1 – 1.2 wt.-% for the material produced by utilization 
of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale 
electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic 
calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated 
material is possible applying this method to a certain limit. Pilot scale trials showed a reduction 
of oxygen contents by 1500 – 3500 ppm. Oxygen levels in lab scale trials showed weaker 
deoxidation effects.  
In order to describe the achieved deoxidation effects in a quantitative way, the analyzed 
oxygen contents of the obtained ingots are compared with calculated data resulting from a 
mathematical kinetic model. The modelled datasets are in good agreement with experimental 
oxygen values. 

1.  Introduction 
 
Titanium and its alloys combine several attractive properties such as high strength, low density, 

corrosion resistance and excellent biocompatibility. Despite these characteristics, the wider application 
of titanium and titanium alloys is limited due to the high manufacturing costs.  
Therefore, since approximately 10 years the IME, RWTH Aachen University, is working on the 
application of a new synthesis and recycling process route for titanium alloys with special regard on 
decreasing the level of oxygen due to its negative influence on the ductility. Detailed investigations on 
each process step were performed by Lochbichler [1] Stoephasius [2], and Reitz [3]. An important 
aspect of the process route is to resort to conventional and established metallurgical processes such as 
Vacuum Induction Melting (VIM), Electroslag Remelting (ESR) or Vacuum Arc Remelting (VAR). 
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According to the type of material (scrap, raw materials) and the composition, different process steps 
are combined to achieve the desired product quality. Main principle to control the oxygen level is the 
introduction of metallic calcium to the liquid slag or melt as a deoxidant. Especially for the material 
class of  -TiAl it could be shown, that deoxidation of these alloys from investment casting scraps 
during ESR is feasible resulting in final oxygen contents below 500 ppm in the product [3]. The 
research presented in this paper focuses on an alternative process route for Ti6Al4V alloys with 
special regard on the PESR deoxidation.  

2.  Fundamentals 
 

One of the most challenging tasks in the refining process of titanium alloys is the removal of 
oxygen present in titanium as dissolved TiO. Besides the high stability of TiO (Gf = -357 kj/mol @ 
1750°C) also the oxygen solubility of up to 33 at% in the system Ti-O indicates that the removal is 
difficult. The deoxidation by vacuum distillation is not feasible due to the necessary oxygen partial 
pressure in the furnace atmosphere (po < 10^20 bar for 1000ppm in a cp-Ti melt) which is so low, that 
even present oxygen from the gas phase will be nearly fully dissolved. Thus, the use of deoxidation 
agents becomes evident. 
Regarding the Vacuum Induction Melting of titanium and titanium alloys, the choice of the refractory 
material is crucial. According to standard Gibbs free energy calculations of oxides, only CaO, Y2O3 
and ZrO2 seem to be sufficiently stable against titanium, whereas CaO should be most stable. 
Tsukihashi et al. [4] investigated the calcium and oxygen uptake in c.p. titanium and TiAl melts in 
equilibrium with solid CaO. The experiments were conducted in a closed system by using a lid to 
avoid Ca evaporation. His research shows, that the reaction according to (1) is causal between for the 
equilibrium between calcium and oxygen in titanium melts, which depends strongly on temperature. 
[4] [5] 

 
 [TiO]Ti + [Ca]Ti = [CaO]slag + Ti (1) 

[A]B: A dissolved in B 
 

Unfortunately, Tsukihashis results do not allow a prediction of the reachable final oxygen contents in 
the melt during ESR since the distribution coefficient between calcium in the metal and calcium in the 
slag is not known. Extending Tsukihashis work, Okabe et al. [6] equiblirated Ti melts with CaO and 
Ca (aCa = aCaO = 1) and calculated the activity coeffictient fTiO. Based on this work, Stoephasius et al. 
[5] calculated the deoxidation limits of Ti and TiAl melts with metallic calcium as deoxidant. Since 
during electroslag remelting, instead of pure CaO a CaF2-(CaO) slag (with metallic Ca as deoxidant) is 
used, the CaO activity is decreased. Therefore, from a thermodynamic point of view, deoxidation of cp 
titanium melts below 2000 ppm oxygen should be possible in general. However, major challenge 
during PESR deoxidation of titanium is to achieve a homogeneous oxygen distribution in the whole 
ingot. Since the CaO concentration is increasing according to (1) during remelting, the Ca activity has 
to be continuously increased during the process for compensation. Furthermore, the CaO-activity can 
be decreased by dilution via addition of CaF2 to the slag. Figure 1 exhibits that the necessary Ca 
content in the slag to reach specification conform oxygen contents is much higher in cp-Ti melts than 
in TiAl. Thus, because of the high vapour pressure of Ca, this results into difficult handling of high Ti 
containing melts.  
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Figure 1: Necessary Ca content in the slag in order to achieve specification conform oxygen contents 
in titanium and titanium aluminide [5] 
 

3.  Experimental 

3.1.  Masteralloy synthesis by Aluminothermic Reduction (ATR) 
 
The feasibility of aluminothermic reduction (ATR) of TiO2 to produce Ti alloys was shown in 
previous works [7][8]. The main challenge for the ATR process is to produce Ti alloys with high 
titanium and low aluminium content. However, the high oxygen solubility of titanium does not allow 
producing Ti alloys with low aluminium and simultaneous low oxygen contents. Because Al is used as 
alloying element in many Ti materials, residual Al content in the ATR product can be tolerated. The 
inverse correlation of Al and O content in titanium materials is reported to be 6 wt.-% Al at >10 wt.-% 
O and 36.-% Al at 1.4 wt.-% O. [9] The typical oxygen content of aluminothermically produced TiAl 
material varies between 1.3 and 1.8 wt,-% [7][8]. Therefore, a subsequent deoxidation step has to be 
performed for ATR Ti in order to meet the specifications of 2000 ppm. It is of particular interest to 
provide aluminothermic reduced titanium for further titanium based alloy production. By co-reduction 
of TiO2 and other oxides of alloying elements such as vanadium the synthesis of a master alloy is 
possible. In this respective, Ti-6Al-4V, representing the most utilized titanium alloy, gets relevant.. 
For the present research the composition of the master alloy is chosen as Ti with 60 wt.-%, Al with 24 
wt.-% and V 16 wt.-%. For the subsequent processing by VIM titanium sponge has to be charged with 
a ratio of 3:1.  
 
The reduction of TiO2 with aluminium requires further heat input to obtain the reaction self-
propagated. KClO4 is added to the reaction mixture with the required amount of aluminium. For 
synthesis of the master alloy, the combined reduction of oxides of titanium and vanadium is 
performed. There are different oxides available, such as V2O3, V2O4, V2O5 and mixtures of theses 
oxides whereat V2O5 provides the highest enthalpy input. In order to decrease the KClO4 amount and 
hereby decreasing Cl-bearing off-gas V2O5 is used in every experiment. In order to decrease the 
liquidus temperature of the alumina slag, lime is added to the ATR mixture as flux. All input materials 
are added in powder form and blended before charging. Experiments on two different scales (20 L ≙ 
6kg of product and 90 L ≙ 30 kg) are performed in the present work. The initial ignition is carried out 
by a filament on top of the input mixture in all trials. After reaction, the produced metal ingot is 
analyzed with respect to total oxygen as well as base elements. The ingot is cleaned from residual slag 
attached to the surface and crushed for the subsequent processing steps. 
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remelting and cooling for several hours, the ingot is stripped, the cap-slag and slag skin are removed, 
the ingot is sectioned and analyzed by IGF for oxygen. 
 

4.  Results and Discussion 

4.1.  Masteralloy synthesis 
 
EDX-analyses exhibit that present inclusions are mainly alumina based oxide particles, spinel type 
particles of alumina and calcia were detected as well. The EDX-results indicate locally strong 
variations of the metal composition. The titanium content varies between 51 and 62 wt.-%, Al between 
21 and 26 wt.-% and vanadium between 13.6% and 22.4 %. However, the average values for 
aluminium and titanium match with the results of the ICP-analysis. The metal product of the small 
scale trial results in lower titanium yields and effects hereby a higher amount of aluminium because 
not consumed for TiO2 reduction. 
Table 1 shows the oxygen contents of the obtained master alloys. With respect to the lower titanium 
content and higher aluminium content, the lower oxygen amount in the small scale trial is evident and 
corresponds with literature data. For further processing, the 6kg batch was used for lab scale VIM 
trials (VIM1a-3a), the 30kg batch for pilot scale (VIM1b-3b) melts. 
 

Table 1. Chemical composition of the ATR master alloys (all elements in wt.-%) 

Trial Ti Al V Fe Si O 

6 kg batch bal. 31.7 12.6 2.40 0.28 0.78 

30 kg batch bal. 22.4 14.4 1.95 0.73 0.92 
a a – lab scale, b – pilot scale 

4.2.  Vacuum Induction Melting 
 
Table 2 show the concentration of the major elements in the obtained electrodes from lab and pilot 
scale tests. Since one lab scale ingot consists of two castings, an oxygen concentration gradient from 
top to bottom can be measured. In general, the oxygen pickup when using CaZrO3 crucibles is lower, 
which indicate their stability. On the contrary, a Zr enrichment in the metal can be measured. A 
detailed description of the CaZrO3-Ti-interaction is given by [10]. Melting in pure lime crucibles leads 
to an oxygen increase to approx. 1-1.2 wt.-%. All cast electrodes are further processed in the 
electroslag remelting process. 
 
Table 2. Chemical composition of obtained lab- and pilot scale electrodes (all elements in wt.-%) 

Trial Ti Al V Zr Fe Si Otop/bottom 

VIM 1a 89.77 5.69 2.38 1.36 0.24 0.14 0.70/0.93 

VIM 2a 90.97 5.32 2.12 0.87 0.24 0.11 0.62/0.72 

VIM 3a 90.51 4.87 2.47 1.43 0.25 0.12 0.74/0.94 

VIM 1b 85.53 9.05 4.61 - 0.36 0.20 1.05 

VIM 2b 87.00 8.20 3.91 - 0.32 0.26 1.04 

VIM 3b 85.82 8.60 4.48 - 0.36 0.20 1.24 
a a – lab scale, b – pilot scale 
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