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Abstract. A longtime goal of superalloy producers has been to control the geometry 
of the liquid pool in solidifying ingots. Accurate pool depth control at appropriate 
values is expected to result in ingots free of segregation defects. This article describes 
an industrial VAR experiment in which a 430mm (17 in) diameter Alloy 718 electrode 
was melted into a 510mm (20 in) ingot. In the experiment, the depth of the liquid pool 
at the mid-radius was controlled to three different set-points: 137 mm (nominal), 193 
mm (deep) and 118 mm (shallow). At each level, the pool depth was marked by a 
power cutback of several minutes. The ingot was sectioned and longitudinal slices 
were cut out. Analysis of the photographed ingot revealed that accurate control was 
obtained for both the nominal and deep pool cases, while the third one was not 
conclusive.  

1.  Introduction 
Alloy 718, a nickel-based superalloy, is the most widely-used superalloy in history. This material can 
be found extensively in aircraft engines and power-generation turbines. These days, the drive for 
increased operating efficiency in these applications has resulted in the need for larger, yet structurally 
ingots for forging stock of Alloy 718 [5]. However, this task has proved challenging due to an 
increasing tendency for segregation defects at larger diameters. 

Engineers have dedicated years to the development of techniques to prevent segregation defects in 
large ingots of nickel superalloys. Triple melting (TM) by VIM+ESR+VAR was largely successful in 
that task and enabled the fabrication of ingots up to 510 mm (20 in) in diameter for Alloy 718 and 910 
mm (36 in) for Alloy 706 [4]. Moreover, adjustments in chemistry (reducing carbon, nitrogen, and 
niobium) enabled the production of Alloy 718 ingots up to 910 mm (36 in) in diameter [6]. 

At the same time, it was observed that the tendency for defect formation in superalloys was 
determined by the liquid pool profile and ingot solidification patterns during the process. Based on this 
observation, it was hypothesized that accurate solidification control would result in improved ingots, 
and potentially larger Alloy 718 ingots free of segregation defects. However, the lack of an 
appropriate solidification model in VAR prevented the development of a pool profile controller. 

The first attempt to control pool shape in VAR was reported by Beaman et al.[1].Although 
promising, the method was not extendable to large ingots due to the model’s inability to describe 
convective heat transfer in the liquid phase. This paper describes the first pool depth control 
demonstration in large ingots. In the experiment, an alternative form of the controller proposed by 
Beaman was used to melt a 430 mm (17 in) diameter Alloy 718 electrode into a 510 mm (20 in) ingot. 
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The etching results for the first two commanded pool depths are particularly encouraging. Pool 
shapes revealed by the segregation patterns generally match BAR results and the mid-radius pool 
depths appear in reasonable agreement with the set-point values. Careful metallographic analysis of 
the plates will need to be performed if more accurate knowledge of the pool shapes is required, but the 
results shown in Figures 8 (a) and (b) are certainly very reasonable even if they are not perfectly 
accurate. Figure 8 (c), on the other hand, indicates a discrepancy between what was theoretically 
expected and what was actually produced in the ingot. 

Going back to Figure 7, which shows calculated LSTs for the test melt, it is clear that a steady-state 
thermal distribution was not reached in the ingot during any of the pool depth holds. However, BAR 
data immediately prior to marking the 118 mm pool indicate that the solution is well behaved at this 
point. Given the evidence of heavy shelf in the segregation etched plate, it is possible that the shelf 
formed during the power cutback and simply never melted back at the relatively low power required to 
hold the shallow pool set-point (~5000 A). If this is true, we would expect the centerline pool depth to 
be closer to the BAR prediction. Confirmation (or refutation) of this hypothesis may be revealed by 
more careful metallurgical analysis of the plate. 

The observation that pool depth may be controlled to a constant set-point under conditions of 
widely fluctuating LST indicates that this may not be the best solution to controlling the process so as 
not to form solidification defects. A better approach may be to control LST at one or more radial 
positions instead. 

6.  Conclusions 
A VAR ingot pool depth controller was developed and successfully tested. A single industrial test was 
performed at Special Metals Corporation in New Hartford, New York. In the experiment, a 430 mm 
(17 in) diameter Alloy 718 electrode was remelted into a 510 mm (20 in) diameter ingot. Mid-radius 
ingot pool depth was controlled at three reference set-points during the test melt: 137 mm, 193 mm, 
and 118 mm. Post mortem analysis of the ingot revealed that control at the nominal and deep reference 
values was successfully implemented. Ingot analysis from the shallow pool depth was inconclusive. 
The relevant section of ingot shows signs of heavy shelf possibly left over from the power cutback 
required to produce the shallow pool depth set-point. What little information that can be gleaned from 
the ingot analysis indicates that the pool was significantly shallower than the 118 mm set-point, 
perhaps only 69 mm. Further more careful ingot analysis is warranted at this point. 

In spite of the mismatch at the shallow pool depth setting, the controller performed successfully 
and predictably given the data that were being fed to it. This experiment constitutes the first successful 
pool depth control test in large ingots of Alloy 718. More testing will be required to determine safe 
pool depths to be used as references for the production of larger defect-free Alloy 718 ingots. 
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