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Abstract. Foundry alloys with Al-based matrices have a wide range of uses in today’s global 
economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this 
paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. 
Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, espe-
cially in the case of castings with low cooling rates such as are found in sand moulds. The 
coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for alu-
minium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up 
the primary dendrites of the -phase solid solution of zinc in aluminium. Such dendrites are the 
principal microstructural component in these alloys. On the other hand, a finer grain structure 
usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In 
the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with differ-
ent additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples 
were subjected to mechanical-property measurements (tensile strength and elongation), image 
analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It 
is found that both of the master alloys used cause significant refinement of the -AlZn primary 
dendrites and change their morphology from linear-branched to semi-globular, increase the 
elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison 
with the initial alloy without inoculation.   

1.  Introduction 
Grain refinement of non-ferrous cast alloys, mainly those based on Al, is a common practice, which 
allows fine microstructures to be obtained with increased ductility [1–8].  

Cast alloys based on Al and Zn are classified as structural materials with good damping capacity. 
In particular, high-Al zinc alloys, for example ZA-27, fall in the category of HiDAlloys (high-
damping alloys) [9]. It has also been noted that high-Zn aluminium alloys show high damping, good 
tribological properties and high fatigue strength [10-12]. Grain refinement has been used for zinc-
aluminium alloys with high Al content of 15-30 wt.% Al [13–18]. In fact, both groups, i.e. high-Al 
zinc and high-Zn aluminium alloys, solidify naturally with a coarse structure and a refinement process 
is necessary to permit highly refined structures to be obtained [18–22]. In practice, there are two main 
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However, the obtained results clearly show that the level of grain refinement should be a compro-
mise to balance good ductility with good damping, thus optimizing the combination of mechanical 
properties.  

 

 
Figure 5. Influence of small Ti addition introduced with TiCAl master alloy on the Al-20Zn alloy 
mean grain diameter (GD). GD-2D is a planar grain diameter evaluated from the intercept method. 
GD-3D is a mean space (volumetric) grain diameter calculated from the Voronoi formula [21, 28]. 

 

 
Figure 6. Tensile strength (UTS) and elongation (A5) of the Al-20Zn alloy inoculated with Al-3Ti-

0.15C (TiCAl) and (ZnAl)-Ti4 master alloy. 

4.  Conclusions 

Based on the studies described above, the following conclusions can be drawn: 
For the high-Zn aluminium alloys in this study, grain refinement is a promising process leading to 

property improvements. At the same time, using the low-melting-point (Zn,Al)-Ti-based master alloys 
avoids the excessive melt overheating needed for the TiCAl or TiBAl refiners and reduces the possi-
bility of gas pick-up and material loss.  

It was also noted that grain refinement decreased the attenuation coefficient of 1 MHz ultrasound 
by about 25%. Taking this into account, it is concluded that further studies of other property changes, 
e.g. creep and tribological properties, would be desirable. 
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Figure 7. Influence of small Ti addition introduced with TiCAl master alloy on the damping proper-

ties of Al-20Zn alloy. Krautkamer USLT2000 – ultrasound of 1 MHz frequency [20-21]. 
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