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Abstract. Achievement of a good level of thermal comfort of under-suits for dry suit diving 

which enable also the required mobility of the diver in water is inevitable not only for the 

scuba sport and commercial diving people but also for safety and activities of people who 

make research under water. The aim of this work is to verify whether selected knitted 

structures (which are not waterproof) can substitute the currently used textile materials 

(nonwovens). This dry-suit innovation is intended to increase the properties which correspond 

to the perception of thermal comfort of the diver in water. To achieve this objective, the 

Alambeta thermal tester was used in the study for experimental determination of thermal 

resistance of spacer warp knitted fabric at varying contact pressure. The studied textiles were 

expected to be very suitable for the intended application due to their low compressibility which 

yields relatively high thickness a hence increased thermal insulation. 

1. Introduction

A Spacer fabric is a double-faced fabric knitted on a double needle bar machine. The distance between 

the two surfaces is retained after compression by the resilience of the pile yarn (usually mono-

filament) that passes between them. End-used for spacer fabrics include moulded bra cups, padding, 

and linings. Other applications are being investigated [1]. 

To analyse the effect of fabric thermal properties under high value of pressure, it should be noted that 

a spacer knitted fabric has a different mechanical behaviour in different directions. The various 

constructions between the wale-wise and course-wise directions can cause different fabric 

compression behaviour due to the various number of contacting points. In addition, during 

compression the spacer monofilaments into the structure can contact one another [2]. 

It is necessary to point out that the compression resistance of spacer fabrics increases with decreasing 

the inclination of the spacer yarns, because the spacer yarns with lower inclination are more oriented 

to the direction of the impact. This can be easily understood by referring to the theory of elastic 

stability from which the critical load Pcr of an elastic rod is given by the following equations: 

when the two ends of the elastic rod are pinned: Firstly, 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2    (1) 

And secondly, when the two ends are fixed: 

𝑃𝑐𝑟 =
4𝜋2𝐸𝐼

𝑙2      (2) 

48th Conference of the International Federation of Knitting Technologists (IFKT) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 141 (2016) 012009 doi:10.1088/1757-899X/141/1/012009

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Where E is the module of elasticity of the material, I is the moment of inertia of the cross-sectional 

area of the rod, and l is the length of the elastic rod. From Equations (1) and (2), it is easily shown that 

the shorter elastic rod exhibits the higher critical load, which leads to higher compression resistance.  

Therefore, the fabric with lower angle of inclination will have higher compression resistance [3]. 

With increasing the fabric thickness, the spacer yarns get longer. If considering the spacer yarns as 

slender rods, their compression resistance will decrease with increasing their length, as indicated by 

Equations (1) and (2). 

2. Thermal properties of textiles

Thermal comfort properties of textile materials have gained the attention of researchers in recent 

times. Although a plethora of researches have been conducted on the mechanical properties of textile 

fabrics, they have hardly played any role during the actual use of the fabrics. In contrast, comfort 

properties determine the way in which the heat, air and water vapour are transmitted across the fabric. 

During heavy activities, the body produces lots of heat energy and the body temperature rises. To 

reduce the temperature, the body perspires in liquid and vapour form. When this perspiration is 

evaporated to atmosphere, the body temperature reduces. 

2.1Principle of ALAMBETA instrument – fabric thermal properties tester 

This apparatus used in this study enables the measurement of the following thermal parameters: 

thermal conductivity, thermal absorbtivity, thermal resistance and sample thickness. The Alambeta 

simulates the dry human skin and its principle depends in mathematical processing of time course of 

heat flow passing through the tested fabric due to different temperatures of bottom measuring plate 

(22°C) and measuring head (32°C). When the specimen is inserted, the measuring head drops down, 

touches the fabrics and the heat flow levels are processed in the computer and thermo-physical 

properties of the measured specimen are evaluated [4]. 

Thermal properties of textiles such as the thermal resistance, thermal conductivity and thermal 

absorbtivity are influenced by the yarn composition and structure, fabric structure, density, humidity, 

type of textile construction, surface treatment, filling and compressibility, air permeability, 

surrounding temperature and other factors. Thermal conductivity coefficient λ presents the amount of 

heat, which passes from 1m
2
 area of material through the distance 1 m within 1 s and creates the 

temperature difference 1 K. The highest thermal conductivity exhibit metals, whereas polymers have 

low thermal conductivity, ranging from 0,2 to 0,4 W/m/K.  

Thermal conductivity of textile structures generally reaches levels from 0,033 to 0,01 W/m/K. 

Thermal absorbtivity b of fabrics was introduced by Hes [4] to characterise thermal feeling (heat flow 

level) during short contact of human skin with the fabric surface. Providing that the time of heat 

contact τ between the human skin and the textile is shorter than several seconds, the measured fabric 

can be simplified into semi-infinite homogenous mass with certain thermal capacity ρc (J/m
3
) and 

initial temperature t
2
. The higher is thermal absorbtivity of the fabric; the cooler is its feeling. In the 

textile praxis, this parameter ranges from 20 Ws
1/2

/m
2
 /K for fine nonwoven webs to 600 Ws

1/2
/m

2
 /K 

for heavy wet fabrics. Thermal resistance R (m
2
K/W) depends on fabric thickness h and thermal 

conductivity λ, i.e. the equation is given by relation: 

R = h/λ (3) 

3. Experimental results

Three types of the dive dry-suits (NW – 1, 2, 3, 3 – used) were used for non-destructive method of 

ALAMBETA testing. The basic characteristic parameters of these nonwoven structures were not 

found. It was not possible to cut the real suit for studying. 

For the comparison, thermal parameters of the non-used dive-dry suit and dry-suit after 300 scuba 

dives were evaluated (NW – 3, 3 – used). Afterwards, 6 different warp-knitted spacer fabrics and 4 

types of nonwoven fabrics were experimentally evaluated under laboratory conditions (t = 23 °C and 

φ = 48 %). 
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3.1Testing of the real dive dry-suits 

The first results of the ALAMBETA instrument are given in the 

Table 1 add in the Figures 1 – 3. 

Table 1. Thermal parameters of the evaluated dive-dry suits 

Figure 1. Thermal conductivity 

of the dive dry-suit 

Figure 2. Thermal resistance of the dive dry-suit Figure 3. Thickness of the dive dry-suit 

(ALAMBETA) 

Thermal conductivity values of all dry-suits exhibited low variability, in respect of their confidence 

interval (Figure 1). The personal experience of the scuba divers refers to the use of the suit named 

NW – 3. They consider that dry-suit as more comfortable. The determined thermal resistance levels 

correspond to the thickness of the suits (Figures 2, 3). The structure of these dry-suits was not 

analysed in order to avoid their destruction.  

Repeated diving cycles bring the decrease of thermal resistance of the suits, as it depends on the fabric 

thickness. The biggest drop of the thickness of the used dry-suits is the main reason why this suit is not 

comfortable for diving in cold water. The water pressure during the diving brings about the changes of 

the nonwoven structure. 

3.2 Testing of the cut samples of innovative dry-suit by mans of the ALAMBETA instrument 

In the experiment five structures of dry-suit materials were compared (Table 2), four based on 

conventional nonwovens (now used and produced) and one with the innovative warp-knitted spacer 

layer (Figure 4). Samples consist from: 

h (mm)

10
3 l 

(W/mK)

10 3  R 

(m².K/W) q  (W/m2)

b

(Wm-2.s1/2.K-1)

NW - 1 6.64 41.6 159 0.119 57.8

NW - 2 12.4 49.4 250 0.178 55

NW - 3 11.5 41.8 275 0.126 39.4

NW - 3 (used) 8.65 40.6 213 0.158 48.5
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 Outer layer – woven fabric

 Middle layer – nonwoven fabric or warp-

knitted spacer fabric

 Inner layer – warp knit or weft knit (in the

case of warp-knitted spacer the inner

layer was not necessary)
Figure. 4 Notation of the spacer monofilament 

(GB 3 and 4), PL 76 tex f 24, PL 33 f1. 

Table 2. Thermal comfort properties of all studied dry-suits. (The values of individual suits were 

determined under the pressure 200 and 1000 Pascal). 

The measurement was performed under the two pressure levels which are possible to set in the 

ALAMBETA tester. The confidence interval of thermal conductivity and thickness (10 samples) was 

also determined; see the Figure 5, 6. 

Unfortunately, better thermal properties did not result from the use of multiple layers of nonwoven 

fabrics (see the results of samples No. 4). The disadvantage of the increasing the mass of the dry-suits 

will be higher than the advantage of the comfort benefit.  

As expected, under the increasing pressure the thickness of the spacer fabric decreases – see the 

sample 5. However, thermal resistance of the warp spacer knits suits less decreases under high 

pressure then thermal resistance of the suits made of nonwoven fabrics including fabrics with special 

hollow fibres. 

Figure 5. Thermal conductivity of the cut samples – two levels of pressure 

Type of used material for simulation of the dry-suits

10 3  l 

(W/mK)

103  R 

(m².K/W)

q

(W/m.m)

b  (Wm-2 .

s1 /2.K-1) h (mm)

1=Woven/Nonwoven (hollow fibre) 150 g/m
2
/Warp knit 50.1 253 0.086 17 12.7

1- 1000 Pa 38.2 124 0.127 30.1 4.74

2=Woven/Nonwoven (hollow fibre +Ag) 150 g/m
2
/Warp knit47.9 327 0.053 15 15.7

2- 1000 Pa 38.5 192 0.076 18.7 7.41

3=Woven/Nonwoven (hollow fibre) 150 g/m
2
/Weft knit 46.7 227 0.093 19 10.6

3- 1000 Pa 37.4 124 0.114 31.9 4.63

4=Woven/Nonwoven (profile fibre) 300 g/m
2
/Warp knit 49.3 404 0.024 5.9 19.9

4- 1000 Pa 40.4 215 0.033 11.8 8.69

5=Woven/Warp-knited spacer 49.9 76.2 0.302 58.8 3.8

5- 1000 Pa 47.7 73.2 0.328 63.9 3.49
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Figure 6. Thickness of the cut samples (ALAMBETA) – two levels of pressure 

3.3 Measurement of the inclination spacer fibres of warp-knits – CT scanner 

Warp-knitted spacer fabrics are often used for improvement of the compression behaviour which is 

depends on the three layer structure configuration (lapping), on the spacer materials (monofilament 

diameter) and on the stitch density of two layers (outer). Thanks to their small inclination at the fabric 

compression these materials enable certain air flow inside the fabric and cause certain thermal 

comfort, which depends on the thickness during the contact pressure that is on the compression 

resistance.  

To determine the real value of the inclination of the spacer fibres inside the warp-knitted fabric and the 

impact of the fixation process on the change of the monofilament inclination (the samples thickness 

has to be changed too) the experiment with CT scanner was performed.  

CT scanner uses an x-ray source with adjustable voltage and a range of filters for versatile adaptation 

to different object densities. Internal structures are reconstructed as a series of 2D cross sections 

(Figure 7) which are then used to analyse the two and three dimensional morphological parameters of 

the object. The process is non-destructive [5]. 

Figure 7. Apparatus for micro CT- 

scanner SkyScan 1174 

Figure 8. Measurement of the spacer monofil angles 

This process starts by the approximation of one of the monofilaments and then by approximation of 

another monofilament, which crosses the first one. Two angles are then determined and after 

subtraction the real inclination of two monofilament axes are calculated. Statistical data of the angles 

from the three samples (thirty values) are given in the Table 3. 
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Table 3. Inclinations of the monofilaments axes from the spacer warp-knitted fabric surface [6]. 

 Before fixation After fixation 

 (º) 58.8 91.8 

s (º) 8.16 66.66 

s
2
 (º) 66.6 44.3 

v (%) 13.8 7.25 

Confidence (º) 55.7-61.8 89.3-94.3 

If the angle of two monofilaments is high (after fixation), the resistance to compression of these 

structure is lower. The process of fixation changes the structural parameters and these changes 

increase the pressure resistance. Higher monofilament angle predicts a structure with higher 

compressibility. The other characteristics which affect the compressibility of spacer fabrics are density 

of spacer warp-knitted fabric, type and count of spacer fibres and lapping diagram together with the 

thickness of the fabric, which is given by the needle bed distance of the double needle bar raschel 

machine.  

The structure of the double needle bar warp-knitted filet in its cross section is given by the lapping 

diagram of the monofilaments. During the fabric production and before fixation process the 

monofilament angle is in the non-relaxed state and the fabric mechanical characteristics (which 

depend on the thickness and compressibility) can differ in values.  

3.4 Innovation of the dive dry-suit with the spacer knits 

As follows from the Tab. 4, thermal resistance of the warp spacer knits suits under high pressures 

practically did not change, contrary to the thermal resistance of the suits made of nonwoven fabrics 

including fabrics with special hollow fibres, which dropped substantively.  

This resistance against pressure of the suit based on spacer fabric is caused by high compression 

resistance of the middle layer. The inclination of the spacer monofilament fibres brings this stability. 

Some characteristics and results of the thickness testing especially of the spacer knits are given in the 

Table 4. It is probably the first attempt to describe the thermal comfort of the spacer fabrics. The 

samples differ in their thickness (and therefore the materials for spacer layer differ too). The notation 

of these structures varies and the threading of the guide bar too.  

During the samples compression the yarn geometry changes and fabric structure is temporarily or 

permanently disrupted. Owing to this process the thermal resistance decreases. The compression level 

Z can be determined by the relation and may also be formatted as 

Z = 
ℎ1−ℎ2

𝑙𝑜𝑔 𝑝2−𝑙𝑜𝑔 𝑝1
 (4) 

where h1 (mm) is thickness under the pressure p1 (Pa) and h2 (mm) is thickness under the pressure p2 

(Pa). These values were determined with UNI-THICK instrument. 

Table 4. Characteristics of the tested materials 

 

Material Thickness

Square 

mass

 (mm)  (gm
-2

)
(200 - 1000) 

(Pa)

(1000 - 10000) 

(Pa)

(10000 - 100000) 

(Pa)

Spacer A PL 83 tex, f180; PL 0.25mm 10 500 5.37 45.44 80.22

Spacer B PL 7.6 tex, f 24; PL 0.09 mm 6 300 4.5 33.45 81.47

Spacer C PL 83 tex, f180; PL 0.25mm 6 335 5.3 39.1 77.8

Spacer D PL 83 tex, f180; PL 0.25mm 7 490 3.94 23.7 69.93

Spacer E PL 83 tex, f180; PL 0.25mm 10 850 6.78 20.59 65.93

Spacer F PL 83 tex, f180; PL 0.25mm 10 800 5.64 16.37 63.18

Nonwoven PL 18.87 54.09 18.87 54.09 87.13

Thickness difference  ∆h  (%) under 

pressure
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Figure 9. The thickness influence of warp-knitted spacer fabrics and nonwoven 

Figure 10. The effect of pressure on the thickness of warp-knitted spacer fabrics and nonwovens 

The Figure 10 clearly illustrates the thickness changes. Thermal conductivity, thermal resistance and 

thermal absorptivity depend on the changed volume density (porosity) of the samples.  

Figure 11. Thermal conductivity of spacer knits and 

nonwovens 

Figure 12. Thermal resistance of the spacer 

knits and nonwovens 
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Figure 13. Thermal absorptivity of spacer knits and 

nonwovens 

Figure 14.  Comparison of properties a new and 

used dive dry-suit with nonwovens (influence of 

water pressure) 

4. Results and discussion

The increasing water pressure during the scuba diving influences the structure of dry-suits and changes 

their thermal properties, as can be seen in the Figure 14. 

From the above results follow, that this sort of suits can really offer the expected high level of thermal 

insulation by maintaining an air (or special gas) layer between the body and the cold water. On the 

other hand, it features certain disadvantage resulting from higher bending and shearing stiffness, 

which may reduce the mobility of the diver under water. This disadvantage can be not so inconvenient 

due to the position in the water – trim.  

The advantages of the innovative dry-suit with spacer warp knitted fabric are: 

 better thermal properties which are necessary for scuba-diver comfort under cold water

 due to the pressure resistant the thickness of the suit will not be changed after diver cycles.

Contrary to these benefits the disadvantages with using spacer knits are: 

 smaller un-comfortableness in “swimming” (stiffness of the knitted textiles)

 problems with diving down owing to huge volume of the air into the structure

 difficulty in processing of spacer fabric into a dive-dry suit.
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