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Abstract. This paper presents the parametric uncertainties identification of a robotic system of 

one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate 

the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models 

of the system was identified in presence of variations in the mass, length and friction of the 

system employing least squares method. Using the input-output linearization technique a 

linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the 

system was modelled giving the controller desired design conditions to achieve a robust stability 
and performance of the closed loop system. 

1. Introduction

Usually, a parametric identification process is performed for a system under ideal conditions. That is, it 

does not take into account the presence of parametric uncertainness and external perturbations that alter 

the system dynamics. For a robotic system, parametric uncertain and external perturbations 

identification presents a challenge because these systems are non-linear, multivariable and exhibit a high 

degree of interaction between its links [2]-[4]. This paper proposes a parametric uncertainness 

identification for a robotic system of one degree of freedom (DOF). A MSC-ADAMS/MATLAB co-

simulation model is built to simulate the robotic system dynamics. Then, the non-linear dynamic model 

parametric identification of the robot is performed using the recursive least square method [1]. After 

this, a linearized dynamic model of the robotic system is obtained applying the input-output linearization 

technique. This linear model belongs to the nominal plant and it represents a model of the system without 

considering external disturbances and parametric uncertainness. Then, the family of plants for the 

robotic system is calculated varying the mass, width and friction in the co-simulation model of the 

robotic system, applying the linearization technique for each condition. From the family of plants, the 

multiplicative uncertainty is computed for each member of the family and the maximum multiplicative 

uncertain profile of the system is determined. This maximum uncertain profile allows to find the desired 

design conditions for the controller which ensure the stability and robust performance of the robotic 

system [5]. The paper is structured as follows. First, a MSC-ADAMS/MATLAB co-simulation model 

is presented. Second, the parametric identification using recursive least square method is performed. 

Third, a linearized model of the robotic system is obtained by input-output linearization. Fourth, the 

family of plants is determined to obtain the maximum multiplicative uncertain profile and find the 

desired design controller specifications to reach a robust stability and performance.    
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2. ADAMS-MATLAB co-simulation dynamic model

In order to study the real-time dynamic behaviour of the robotic system is necessary to build a simulation 

model able to emulate all the dynamic actions applied over the robotic system during its operation, such 

as friction, Coriolis forces, gravity effect, and more. For this, MSC-ADAMS software was used. The 

robotic articulation of one DOF can be represented with a simple pendulum that receives an applied 

torque in order to generate the movement. The pendulum is placed in the same direction as the gravity, 

which must be compensated later for the development of the controller. The robotic system rotates 

around Z-axis, and the applied torque is perpendicular to the movement axis. Then, the MSC-ADAMS 

model is exported to MATLAB to modelling the parametric uncertain of the robotic system [6]. Figure 

1a shows the MSC-ADAMS model of the robotic system. 

3. Identification of the robotic-joint dynamic model

According to [1], the dynamic model for a robotic joint of 1DOF is given by (1) 

𝜏 = [𝐼𝑟1 + 𝑚1𝑙𝑐𝑙
2]𝑞̈ + 𝑏1𝑞̇ + 𝑓𝑐1𝑠𝑖𝑔𝑛(𝑞)̇ + [𝑚1𝑔𝑙𝑐𝑙]𝑠𝑖𝑛(𝑞) (1) 

where, 𝜏 is the applied torque, 𝑚1 is the mass of the pendulum, 𝑙𝑐𝑙 is the gravity centre, g is the gravity

force, 𝑞, 𝑞̇ and 𝑞̈ are the position, speed and acceleration of the pendulum respectively, and 𝑏1 and 𝑓𝑐1

represent the viscous and Coulomb friction. (1) can be expressed in parametric form as is defined in (2). 

𝜏 = 𝜃1𝑞̈ + 𝜃2𝑞̇ + 𝜃3𝑠𝑖𝑔𝑛(𝑞)̇ + 𝜃4𝑠𝑖𝑛(𝑞) (2) 

where 𝜃1 = 𝐼𝑟1 + 𝑚1𝑙𝑐𝑙
2
 , 𝜃2 = 𝑏1 , 𝜃3 = 𝑓𝑐1 , 𝜃4 = 𝑚1𝑔𝑙𝑐𝑙. The identification of the dynamic model

constants 𝜃1, 𝜃2, 𝜃3 and 𝜃4 is performed using the linear regression method based on the recursive least-

squares (RLS) algorithm. Based on the co-simulation model and the applied torque defined in (3) the 

identification process is implemented using the experimental data from position, speed, acceleration and 

applied torque of the joint. 

𝑍 = [2000 cos(2𝑡) + 2000𝑠𝑖𝑛(10𝑡)] N-mm (3) 

Applying the recursive least-squares algorithm, the constants of the dynamic model proposed in (2) 

corresponds to 𝜃1=150.0136, 𝜃2= -41.69, 𝜃3=-4.69, 𝜃4=5274.7. Figure1b shows the co-simulation

torque trajectory Z against to the RLS model with torque trajectory Z with a correlation of 99.7%. 

(a) (b) 

Figure 1. (a) MSC-ADAMS model, (b) identification torque trajectory 
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4. Robotic system linearization using the input-output technique

To obtain the nominal plant and the family of plants, is necessary a linear model of the system. Since 

the robot dynamic is non-linear system as is described in (2), it requires a linearization technique to 

obtain its linear model. In this case, the input-output linearization technique was used [7]. The 

representation of the system in state variables is shown in (4), with 𝑥1 = 𝑞 and 𝑥2 = 𝑞̇.

[
𝑥1̇(𝑡)

𝑥2̇(𝑡)
] = [

𝑥2(𝑡)

−
𝜃2

𝜃1
𝑥2(𝑡) −

𝜃3

𝜃1
𝑠𝑖𝑔𝑛(𝑥2(𝑡)) −

𝜃4

𝜃1
sin (𝑥1(𝑡))

] + [
0
1

𝜃1

] 𝜏(𝑡) (4) 

If,  𝑓(𝑥) = [
𝑥2(𝑡)

−
𝜃2

𝜃1
𝑥2(𝑡) −

𝜃3

𝜃1
𝑠𝑖𝑔𝑛(𝑥2(𝑡)) −

𝜃4

𝜃1
sin (𝑥1(𝑡))

] and 𝑔(𝑥) = [
0
1

𝜃1

]

The system (4) can be expressed as: 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 
(5) 

𝑦 = ℎ(𝑥) = 𝑥1

The linearization control law is given by (6) 

𝑢 =
1

𝐿𝑔𝐿𝑓(𝑥)
[−𝛽0ℎ(𝑥) − 𝛽1𝐿𝑓(𝑥) − 𝐿𝑓(𝑥)

2 + 𝜈] (6) 

where 𝑣 is the new entry of the system, 𝛽0 and 𝛽1 are the constants of the desired polynomial that

represents the open-loop behavior of the linearized system. 𝐿𝑓(𝑥), 𝐿𝑓(𝑥)
2 and 𝐿𝑔𝐿𝑓 (𝑥), are given by (7)-(10) 

using Lie’s algebra. 

𝑙𝑓ℎ(𝑥) =
𝜕ℎ(𝑥)

𝜕𝑥
𝑓(𝑥) = 𝑥2 (7) 

𝑙𝑔ℎ(𝑥) =
𝜕ℎ(𝑥)

𝜕𝑥
𝑔(𝑥) = 0 (8) 

𝑙𝑓
2ℎ(𝑥) =

𝜕𝑙𝑓ℎ(𝑥)

𝜕𝑥
𝑓(𝑥) = −

𝜃2

𝜃1
𝑥2(𝑡) −

𝜃3

𝜃1
𝑠𝑖𝑔𝑛(𝑥2(𝑡)) −

𝜃4

𝜃1
sin (𝑥1(𝑡))

(9) 

𝑙𝑔𝑙𝑓ℎ(𝑥) =
𝜕𝑙𝑓ℎ(𝑥)

𝜕𝑥
𝑔(𝑥) =

1

𝜃1

(10) 

The desired characteristic polynomial for the linearized system is described in (11): 

𝑠2 + 𝛽1𝑠 + 𝛽0 = 0 (11)

Parameters 𝛽1, 𝛽0, are computed so that the frequency response of linearized system (𝑃(𝑠)) be

comparable to a second order linear model presented in (12). 

𝑃(𝑠) =
𝑦(𝑠)

𝜈(𝑠)
=

0.49

1 + 1.30𝑠 + 0.496𝑠2
(12) 

5. Parametric uncertain identification and determination of robust operation conditions

Linearized model of the system presented in (12) correspond to the nominal plant. To obtain the family 

of plants, the robotic system is tested against parametric uncertainness in the width, mass and joint 
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friction. Table 1 shows the original parameter of the robotic system and its percentage of variation due 

to parametric uncertainness described above.  

Table 1 Range of variation of parametric uncertainness 

Parameter Nominal Value Perturbation (%) 

Mass (M) 2kg ±10 

Width (W) 4 cm ±5 

Joint Friction (F) 0.3 N ±15 

From each condition presented in Table 1, co-simulation model is modified to obtain the parameters 𝜃1

to 𝜃4 of the dynamic model (2) against each set of perturbations as show in Table 2. The + and – signs

in Table 2 indicates the maximum and minimum values of the parameters mass (M), width (W) and joint 

friction (F). As shown in Table 2, the parameters of the dynamic model (2) varying according to the 

uncertain set presented. This indicates that the robotic system dynamics is different for each uncertain 

set applied. From the dynamic model parameters (2), the robotic system is linearized as a linear second 

order system descripted in (13) with 𝜁, 𝑇𝑤 and 𝑘𝑝 calculated for each condition as shown in Table 3.

Frequency response of the family of plants is presented in Figure 2. 

𝑃𝑖̃(𝑠) =
𝑘𝑝

1 + 2𝜁𝑇
𝑤

𝑠 + (𝑇𝑤𝑠)2 (13) 

Table 2.  Robotic system dynamic model parameters variation for each parametric uncertainness. 

Parameters Nominal 
F M W 

- - - 

F M W 

+ - - 

F M W 

+ - + 

F M W 

- - + 

F M W 

+ + - 

F M W 

+ + + 

F M W 

- + - 

F M W 

- + + 

𝜽𝟏 150.0136 139.7957 160.0754 160.03 138.95 160.11 160.07 139.08 138.91 

𝜽𝟐 -13.6251 -18.872 -18.6263 -17.98 -17.74 -18.56 -17.82 -18.33 -17.69 

𝜽𝟑 4.9657 30.5345 -0.0071 2.35 22.41 0.13 2.07 23.5 22.09 

𝜽𝟒 5275 4759 5786 5784 4725 5785 5785 4725 4725 

Table 3 Linearized family of plants for the robotic system. 

Parameters Nominal 
F M W 

- - - 

F M W 

+ - - 

F M W 

+ - + 

F M W 

- - + 

F M W 

+ + - 

F M W 

+ + + 

F M W 

- + - 

F M W 

- + + 

𝒌𝒑 0.49 1.7 0.193 0.19 1.69 0.193 0.1911 1.71 1.69 

𝑻𝒘 0.7 1.26 0.365 0.36 1.27 0.365 0.368 1.25 1.27 

𝜻 0.92 0.35 0.66 0.67 0.355 0.666 0.673 0.3624 0.355 

Figure 2. Frequency response of the family of plants of the robotic system 

As shown in Figure 2, the nominal plant represented by * is placed between the variation range presented 

by the uncertainness descripted in Table 1. Once the family of plants is defined, the uncertain of each 

member of the family of plants is calculated using the multiplicative uncertain model [8] showed in (14). 
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|𝛿𝑃𝑖(𝑠)| = |
𝑃̃𝑖(𝑠)

𝑃𝑛(𝑠)
− 1| 

(14) 

where 𝑃𝑛(𝑠) correspond to the nominal plant descripted by (12) and 𝑃𝑖̃(𝑠) is the ith member of the family

of plants. Frequency response of the multiplicative uncertain profile of each member of the family of 

plants is shown in Figure 3a. To find the conditions for robust performance and stability is necessary to 

determinate the maximum multiplicative uncertain profile. For this, the maximum uncertain profile is 

estimated according to the frequency response of the multiplicative uncertain for the family of plants 

shown in Figure 3. The maximum multiplicative uncertain profile reached is given by (15) and its 

frequency response is shown in Figure 3b. 

𝛿𝑝𝑚𝑎𝑥(𝑠) =
0.5𝑠2 + 5𝑠 + 8

𝑠2 + 2𝑠 + 1
(15) 

(a) (b) 

Figure 3. (a) Multiplicative uncertain profile for the family of plants of the robotic system and (b) 

Maximum multiplicative uncertain profile of the family of plants. 

As observed in Figure 3b, the maximum profile of multiplicative uncertain represented by * covers all 

the multiplicative uncertainness descripted by the family of plants. From [8], the closed loop desired 

specifications are calculated to achieve a robust stability and performance according to (16).  

|𝑇(𝑠)| ≤ |
1

𝛿𝑃𝑚𝑎𝑥(𝑠)
| (16) 

where |𝑇(𝑠)| is the magnitude of the complementary sensibility function and |𝛿𝑃𝑚𝑎𝑥(𝑠)| correspond to

the magnitude of maximum profile of multiplicative uncertain. Figure 4 shows the function 

|1/𝛿𝑃 max  (𝑠) | which restrict the closed loop bandwidth of the system to 0.7 𝑟𝑎𝑑/𝑠. The bandwidth 

is related to the natural frequency 𝑤𝑛by (17).

𝑤𝑏 = 𝑤𝑛√1 − 2𝜁2 + √(1 − 2𝜁2)2 + 1
(17) 

Assuming 𝜁 = 0.6 which is equivalent to an 10% overshoot, from (16) 𝑤𝑛 = 0.61 𝑟𝑎𝑑/𝑠, the desired

closed loop function is (18). The frequency response of (18) is shown in Figure 5 which bandwidth is 

limited by the maximum inverse uncertain profile. 

𝑇(𝑠) =
0.037

𝑠2 + 0.73𝑠 + 0.37
(18) 

The closed loop specifications to reach a robust stability and performance are given by (19) and (20) 

where (19) is the phase margin and (20) the gain crossover frequency. Solving (19) and (20), the design 

conditions for the controller are 𝑝𝑚 = 60° and 𝑤𝑐 = 0.43 𝑟𝑎𝑑/𝑠.
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𝑝𝑚 = 100𝜁 (19) 

𝑤𝑐 = 𝑤𝑛√√4𝜁4 + 1 − 2𝜁2 (20) 

 

Figure 4. Desired robust operation conditions for the robotic system

6. Conclusions

This paper presented a methodology for the parametric uncertainness identification of a robotic system. 

A MSC-ADAMS/MATLAB co-simulation model was built for the parametric identification of the 

dynamic model using least square algorithm. The dynamic model was linearized using input-output 

linearization, obtaining the nominal plant. After that, a set of parametric uncertainness is defined to 

obtain the family of plants for the robotic system. Then the multiplicative uncertain of the family of 

plants is determined to find the maximum uncertain profile, which one establishes the closed loop system 

specifications to reach a robust stability and performance. Results show that when a robotic system is 

affected by external disturbances and parametric uncertainness, it results in many dynamical behaviours 

of the system, which must be covered for a controller to get a robust performance of the system. 

Employing the proposed methodology the desired design controller specifications to achieve a robust 

stability and performance against the presence of external disturbances a parametric uncertainness can 

be found. As well, this methodology may be applied to any non-linear system in order to achieve a 

robust stability and performance. 
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