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Abstract. Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. 

The durability and insulating ability of TBCs are highly dependent on the residual stresses of 

top coatings, thus the investigation of the residual stresses is helpful to understand the failure 

mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical 

vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of 

TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope 

(SEM). An interface model of TBCs is established based on thermal elastic-plastic finite 

method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial 

roughness. Both experimental and simulation results show that it is feasible to predict the crack 

location by stress analysis, which is crucial to failure prediction. 

1.  Introduction 
Thermal barrier coatings (TBC) are deposited on the surface of super alloy to protect the substrate, 

which can improve the thermal efficiency of engine more than 60% at 1600oC [1-4]. TBCs are widely 

used in the field of aerospace. The major failure form of TBCs is the ceramic layer fall off from the 

bond coat during service. When the ceramic layers fall off, the high temperature gas will corrode the 

substrate which may have catastrophic consequences [5]. Hence, the study on the TBCs’ failure 

mechanism has an important significance.  

TBCs usually consist of a super alloy substrate (S), a metal bond coating (BC), a thermal grown 

oxide (TGO) and a top ceramic coating (TC). At present, preparation methods of TBC are commonly 

electron beam-physical vapor deposition (EB-PVD) and air-plasma spray (APS) in industry 

production [6]. Compared to APS, the EB-PVD method has the characteristics of high cost and good 

spraying quality [7]. In addition, TBCs prepared by the two methods have different interfacial 

morphology between BC and TC. 
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Because of the mismatch of fast contraction of sprayed coating layer, thermal expansion and 

possible phase transition, the residual stresses of thermal barrier coatings will increase during the 

preparation [8-10]. Furthermore, the shape of TGO and parameters of each layer have great influences 

on the stresses of TBCs, due to the complex interaction among thermal, elastic, plastic, oxidation, 

creep, sintering and phase transition. By studying the stress evolution, it is possible to predict the crack 

initiation and growth. Thus, the study on the stress field is very meaningful to understand the failure 

mechanism of TBCs. 

The residual stresses in TBCs prepared by APS have been investigated using theory and 

experiment methods [11-14]. The main objectives of the present work are to obtain the stress filed of 

TBCs prepared by EB-PVD using finite element method and to predict the crack initiation and 

propagation based on the simulation. 

2.  Experiment 

2.1.  Specimens and heat treatment 
TBCs were composed of a metal bond coating and a top ceramic coating deposited on a GH3030 super 

alloy substrate. The size of the substrate was Φ30×4mm. The main component of the metal bond 

coating was a NiCoCrAlY alloy, and the thickness of BC layer was about 120μm. On top of the bond 

coating, a ZrO2-7wt%Y2O3 top coating with the thickness of 120μm was deposited. During the coating 

deposition using EB-PVD method, the TBCs were cooled from the preparation temperature of 850oC 

(the initial stress was zero) to room temperature (20oC). After the coating deposition, the specimens 

were subjected to thermal cycle treatments in a furnace. A single thermal cycle included three stages: 

the specimens were heated up to 1000oC in 10mins, kept at 1000oC for 1h, and cooled down the 

specimens to room temperature in 10mins at last. There were 5 groups of samples, and the number of 

thermal cycles was 0, 1, 10, 50 and 100h, respectively.  

2.2.  Microstructure 
After the isothermal cycling treatments, the TBCs samples are cut into four equal parts along two 

diameters. The cross-sections are polished and then corroded using HCl(20ml) + CuSO4(5g) + 

H2O(100ml). Figure 1 indicates the scanning electron microscopy (SEM) results of TBCs on cross 

sections. It is shown that the TBCs consist of three layers. It is known that there is almost no TGO 

without oxidation treatment. After isothermal cycling treatments for 100h, a TGO layer related to the 

oxygen ingress through the porous TC layer and outward diffusion of Al in the BC layer is formed 

between the TC and BC layer.  

More than 20 equidistant points distributed along the BC/TC interface were selected to measure the 

TGO thickness perpendicular to the interface. The thickness of TGO as a function of thermal cycle 

time is expressed by the power law equation below [15-16] 

 h2=kp×t (1)

where h represents the thickness of TGO, t represents the holding time at high temperature, and kp 

represents a regression constant, which is relevant to the porosity and thickness of TBC. Based on the 

experimental results, kp equals to about 0.053μm2/h. By comparison with the results (~0.17μm2/h) of 

Zhu [17], the growth rate of TGO thickness prepared by EB-PVD is slower than that by APS. TC layer 
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