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Abstract. The present study is focused on the relation between the microscopic sinusoidal 
surface morphology and model-Ⅰfracture toughness of carbon reinforced titanium laminates, 
based on cohesive elements. The interface toughness was computed as a function of geometric 
parameters of the interface texture. The results suggest that the toughness is increased when 
wavelength (λ) increase, which provides the need to design fracture/failure resistance materials 
by carefully selecting the suitable parameters of the interface texture. 

1.  Introduction 
Fiber-metal laminates (FMLs) are commonly used in engineering field due to their interesting 
mechanical properties. However, for relatively weak interfaces, stiffness and strength of composite 
were significantly decreased after low velocity impacts. The damage may not be visible with optical 
observation, retaining detrimental consequences, unless proactive action is taken.   

As a dissimilar material, the interfacial failure is an important issue in designing, manufacturing 
and applications of laminates. A common effective method is to modify the interface by sand-blasting, 
etching or laser ablation [1-4], which introduces a certain microstructure and increase fracture/failure 
resistance. However, the quantitative relation between dissimilar materials has not been reported since 
random textures were created by those methods. Additionally, the scientists, find that various creatures 
also make full use of the interface texture from their shell, bond to plant stem [5-10] in its body in 
order to natural environment. In fact, the texture, such as the sinusoidal found in pearls and shell, tend 
to decrease the interfacial energy, which proves an increase in fracture toughness [11-12]. Also, there 
are many methods, such as lithography, to control this micro-pattern on the metal-polymer surface. In 
addition, delamination based on numerical simulation developed for 30-years. The method named the 
cohesive zone model (CZM) is considered as the most effective one. A number of studies have been 
focused on simulating of initial crack and extension with cohesive interface elements. C. Balzani and 
W. Wagner [13], studying a computerized simulation, utilize a cohesive model included both 
exponential model and linear softening model and, the results suggest that the exponential model is 
especial fit for FMLs delamination numerical simulation due to the improved convergence behavior.  

In the present study, the effect of geometrical parameters on a sinusoidal interface was investigated, 
between metal (Commercially Pure titanium, Ti) and carbon fiber reinforced PEEK composite 
(CF/PEEK), through Finite Element (FE) simulations. 
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2.  Materials and methods 
The grade TA2 at thickness of 2 mm was considered as mental-base and the CF/PEEK composite was 
used as the reinforcing material. 

To study the pattern effect of interface toughness between metal and polymer, a kind of 
commercial photoresist (SUN-1150P from SUNTIFIC, CHINA) was covered on the polished Ti 
surfaces, and then exposed to Ultra Violet through a patterned mask. The part of photoresist film 
which was exposed to Ultra Violet was developed to have a number of line patterns, whose width 
include 100, 200 and 300 µm using different masks. After exposing, in order to make micro-patterns 
on the Ti surface (figure 1), the part of the un-covered Ti surfaces of the Ti, developing solution was 
chemically etched in a mixed solution nitric acid and hydrofluoric acid. After that, 10 piles of pregreg 
stacked on the Ti surface and put onto a hot press in a certain pressure and temperature together. The 
ASTM D5528-01 standard [14], which has been well established for double cantilever beam (DCB), 
gives the preparation and characterizations details of DCB test. 

 

 

Figure 1. (a) 3D profile of the Ti interface after etching; (b) the surface coating with the photoresist. 

3.  Numerical modeling 
A bi-linear cohesive zone law considered as the constitutive model of the cohesive elements 
describing the relationship between traction (σ) and displacement jump (δ) at the interface where crack 
develops, which has a fundamental assumption that the initiation and evolution of interfacial failure 
experiences an initially linearly elastic behavior is employed in the present work.  

Two TA2 panels and a CF/PEEK are bonded a along sinusoidal interface. For the sinusoidal 
interface, variables, such as the material properties, the applied load and geometric parameters, have 
significant effect on the critical interface toughness (GIC). However, for the TA2/CF/PEEK laminate, 
the geometrical parameters which describe the characteristic of the sinusoidal patterns on the interface 
of Ti determine GIC as the others are constant. The sinusoidal interface is described by 
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. Here, the initial crack tip position defined by Cartesian coordinate system (x, y = 

0). For x < 0, the interface suffers an artificial crack, while for x ≥ 0, the interface is bonded and 
cohesive elements are inserted along sinusoidal interface while are used for simulating the interfacial 
delamination. In the case that the initial shape of the crack is defined by a straight line, having the 
initial artificial crack placed in the transition zone between a smooth and a sinusoidal part regarded 
this case is handled as the sinusoidal interface.  

The specimens experience large deformation where geometrically and material non-linear finite 
elemental analysis should be considered. Otherwise, the materials experience both elastic deformation 
and plastic deformation. A von Misses isotropic plasticity model is used to control yielding. 

Finite element software was employed for all simulations all simulation. The four-node is 
oparametric quadrilateral plane element, Plane182, was employed for solid materials. The relatively 
weak sinusoidal interface between Ti and CF/PEEK was represented by incorporating cohesive 
elements which are controlled by the bilinear softening model. These elements which carry the normal 

2016 Global Conference on Polymer and Composite Materials (PCM 2016) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 137 (2016) 012029 doi:10.1088/1757-899X/137/1/012029

2



and shear separation force between two solids describe weak interface. The contact pair incorporated 
with cohesive elements was inserted along the sinusoidal. 

4.  Results and discussion 
The way of crack development by gradual stable growth, showed in figure 2(a), has three stages 
generally. In the first stage, the crack maintains its original position while stress concentration occurs. 
In the second stage, the stable crack occurs along the sinusoidal interface. In the third stage, the crack 
propagates rapidly when the load increases. At the same time, a typical cure describing the 
relationship both loading and displacement which is from DCB test, showed in figure 2(b), suggests 
that the interface failure mechanism is a slow transition from linear-elastic to elastic-plastic behavior 
as the loading going on when the crack development from the stable stage to unstable stage. 

 

 

Figure 2. (a) Evolution of the crack propagation along the sinusoidal interface, showing increasing 
GIC; (b) a typical cure describe the relationship both loading and displacement from DCB test.  

 

 

 

Figure 3. The results obtained from both experiment and numerical simulation of DCB of the 
specimens with sinusoidal interface: (a) λ =0 µm, (b) λ=100 µm, (c) λ =200 µm and (d) λ =300 µm. 
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The typical cure describing the relationship both loading and displacement, indicate that the critical 
load is increased when the λ is increased and are in a good agreement with the calculated curves, as 
presented in figure 3. Both results of the simulation and DCB test demonstrate that the sinusoidal 
interface plays an important role in the critical loading, which increases when the value of the λ is 
increased.  

The highest toughness value(G) was obtained for a wavelength of 200µm, while the G values that 
were obtained for 100 µm or 300 µm, were above the one obtained for a smoother interface. In order 
to study the reasons of failure, the interfaces were inspected by optical microscope. As seen in figure 
4(a), there is not residual adhesive, adjacent the excavated region. However, the preserved region on 
the surface of titanium has many residual adhesive, as showed in figure 4(b). For the wavelength of 
200µm, there is not only residual adhesive but also the carbon fiber was failed, as presented in figure 
4c. The experiments demonstrate that the interface toughness can be manipulated by sinusoidal 
interface, which change the mechanism of crack propagation from adhesive failure to cohesive failure. 

 

 

 

Figure 4. Surface of Ti at (a) wavelength with 300µm; (b) wavelength with 200µm. 
 
Figure 5 shows the evolution of the stress distribution with the λ. For λ=100 µm, although many 

stress concentration fields were observed, the stress concentration field is relatively small, while the 
stress concentration field, adjacent to the peak of the sinusoidal interface, is relatively narrow, as can 
be observed in figure 5(b). The stress concentration field distribution presents a continuous 
morphology for λ = 0 µm and λ = 300 µm, as shown in figure 5(a) and 5(d), respectively. However, 
for a wavelength of 200 µm, the stress concentration field distribution demonstrated approximately 
seven discrete discontinuous peeks, while the total volume area is higher, compared to the area 
presented for a wavelength of 100 µm. Also, the stress distribution can affect polymer deformation 
near the interface, as showed in figure 4. The stress concentration field distributions indicate that the 
interface, in which a wavelength of 200 µm was employed, demonstrates a higher efficiency in energy 
dispersion when the crack propagation takes place along the sinusoidal interface.  
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Figure 5. The stress distribution along with the interface for (a) λ=0µm, (b) λ=100 µm, (c) λ=200 µm 
and (d) λ=300µm. 

5.  Conclusions 
The objective of the current work was to analyze the relationship between the interface toughness and 
the non-planar geometry characteristics. A sinusoidal interface was inserted between Ti and CF/PEEK. 
The major findings of the present study include that the interface toughness can be changed by 
selecting of the wavelength and amplitude, which supply suggestions for designing and manufacturing 
high interfacial fracture toughness FMLs. 
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