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Abstract: Groundwater and surface water quantity and quality are an important factor that 

contribute for drinking water demand and agriculture use. The water quality analysis was 

assessed using multivariate statistical analyses based on analytical quantitative data that 

include Discriminant Analysis (DA) and Principal Component Analysis (PCA), based on 36 

water quality parameters from the rivers, lakes, and groundwater sites at Jenderam Hilir, which 

were collected from 2013 to 2014 (56 observations) . The DA identified six significant 

parameters (pH, NO2-, NO3-, F, Fe2+, and Mn2+) from 36 variables to distinguish between 

the river, lake, and groundwater groups (classification accuracy = 98%). The PCA had 

confirmed 10 possible causes of variation in the groundwater quality with an eigenvalue 

greater than 1, which explained 82.931% of the total variance in the water quality data set.  

Keywords: Hydrochemical, water quality, multivariate analysis, principal component analysis, 

discriminant analysis. 

 

 

1. Introduction 

Bank Infiltration (BI) is a surface water (i.e. rivers and lakes) and groundwater process interact which 

surface water is forced to flow through aquifer  into pumping well that are installed on the banks of 

river and lake [1]. BI which important systems for water supply in managed aquifer recharge (MAR), 

has been used for water supplies in Eroupe along the Rhine, Elbe, Danube, and Seine Rivers for over a 

centuryand it has provided  the majority of the drinking water for large cities in Russia, USA, China 

and other countries over the last few decades [2].  
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 The obvious advantage of BI is the conjunctive use of infiltrated surface water and groundwater from the 

alluvial catchments of intake structures, which ensure long-term productivity and stability of the water supply. 

Additionally, surface water contaminants can be significantly removed or degraded as the infiltrating water 

moves from the river/lake to the production wells due to a combination of physicochemical and microbiological 

processes [3, 4]. However, as noted by Schmidt et al. [5], poor surface water quality, heavy clogging of the 

riverbed, and accidental pollution have already greatly threatened BI systems. Importantly, the sustainability of 

BI is affected by particulate organic matter, which intensifies physical or chemical clogging of riverbed on 

various spatial and temporal scales [3]. The degree of these interactions significantly depends on meteorological, 

fluvial, anthropogenic, and geological processes [6]. Such interactions significantly affect the quantity and 

hydrochemical composition of water bodies on the local and regional scales. Therefore, the location of 

groundwater and surface water interaction should be identified and its mechanisms understood for effective 

environmental management. The hydrochemical composition of alluvial systems is largely influenced by 

precipitation, regional geology, aquifer–stream transfer, and anthropogenic contamination. Water quality offers 

insight into various flow pathways, geological settings, and physical and chemical processes in the water [7, 8, 

9]. If water flux data are available, similarities in the water composition of neighboring groundwater and surface 

water bodies, such as in the iron ratio or the concentration of total dissolved solids (TDS), can be used to 

qualitatively or statistically infer groundwater–surface water interaction [e.g. 9,10,11], or to quantitatively 

estimate fractions of water from different sources or end-members with distinct hydrochemistry [5,12,13]. In 

Malaysia, the impact of pollutants on groundwater is highly influenced by surface water, the main source for 

treating domestic water supply. However, some aquifers are locally recharged, and a short period takes place 

between water entry into the aquifer and water distribution for consumption. In this case, the groundwater may 

retain surface water characteristics and contaminants. The pollution of rivers reduces their suitability and 

requires costly water treatment. It is very important to investigated the feasibility of BI as an alternative 

procedure for water demand purposely.BI methods improved the quality of surface water for drinking water use 

in Malaysia which is  based on the percolation of river water through the ground into an aquifer.contaminants 

from the surface water are removed by filtration, adsorption, reduction, and biodegradation through percolation 

process [2,3,14]. 

 Multivariate methods such as discriminant analysis (DA) and principal component analysis (PCA) have 

become increasingly popular in the qualitative and statistical analysis and interpretation of environmental data 

sets, especially where flux data are unavailable. These techniques simplify large data sets by grouping them into 

components or clusters based on the relationships between specified variables [9,15].  Both DA and PCA have 

been extensively used in hydrogeology to identify groundwater facies for the study of natural groundwater 

evolution [16,17,18,19,20] and anthropogenic contamination [18,19]. Several studies have also utilized 

multivariate statistics to classify surface water [21,22,23]. Guler and Tyhne [8] has classified both groundwater 

and surface water bodies on multi- and single-watershed scales respectively to characterize the hydrogeology of 

an area and identify localized areas of groundwater recharge and discharge. Kumar et al. [24] utilized a similar 

statistical methodology to identify the source of contaminated groundwater flowing to an urban reach of the 

Yamuna River in India, and to classify groundwater and surface water bodies according to hydrochemical 

similarities. This study aims to understand the hydrochemical influence on BI in the study area and to determine 

whether multivariate analysis can help to delineate the interaction between surface water and groundwater. It 

also aims to expand knowledge about this relation and convince water quality managers to use BI method to 

reduce certain parameters.  

 

2. Methodology 

 

2.1 Study Site 

 Located at the downstream confluence of the Langat and Semenyih rivers, the study area in Jenderam 

Hilir is a water reservoir surrounded by lakes. The flat Langat riverbank was chosen to test the effectiveness of 

BI. The study area is located in Selangor within the Langat Basin, extending between 2° 53′ 28.56′′ N and 2° 53′ 

39.75′′ N and between 101° 42′ 03.78′′ E and 101° 44′ 14.58′′ E, covering an area of 10 km2 (Figure 1).  
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Figure 1. Location of study area, major river systems and location of 25 monitoring wells (MW) and test wells 

(DW). 

 

2.2 Monitoring and Test Wells  

Eight wells were drilled with a rotary drilling machine by wash boring the bedrock. Seventeen holes were drilled 

by using a motorized auger to a depth of 2 m to 3 m below the water table. Twenty-five monitoring wells (MW) 

were then constructed at the drilled locations, mostly on the downstream area of the confluence of the Semenyih 

and Langat rivers (Figure 1).  

 

2.3 Data Collection and treatment 

Fifty-six water samples were collected from rivers, lakes, and groundwater from December 2013 to October 

2014 during rainy and dry season About 15 water samples collected from the upstream and downstream Langat 

and Jenderam Hilir Rivers were marked RW, and 13 water samples (LK) were obtained from three lakes (Ponds 

A, B, and C). Twenty-eight groundwater samples were also taken (from DW1 and DW2, the production well 

(PW1), and MW2, MW11, MW12, MW13, MW16, MW19, MW23, and MW25) and marked as GW. The 

sampling locations are shown in Figure 1. For groundwater sampling, the wells were pumped with submersible 

pumps for more than 30 min to reduce  the volume of waste to dispose. Each sample bottle was filled with the 

water sample without entrapping air bubbles to prevent the biochemical and surface reactions during 

transportation and storage Each bottle was labeled with its corresponding sampling station and time and were 

kept at 4 °C to minimize microbial activity in the water [25].  

 The samples were prevent clogging during analysis with spectrometry instruments and to obtain dissolved 

ions for metal analysis [25]. The samples were then acidified with HNO3 until pH<2 to prevent the precipitation 

of components, such as metal oxides and hydroxides, and retard biological activity. Calibrated Multi-parameter 

probes (SevenGo pro probe and SevenGo Duo pro probe, Mettler Toledo AG, Switzerland) were used to 

measure electrical conductivity (EC), TDS, and pH in situ.. Bicarbonate (titration using 0.02 N HCl) and 

chloride ions (argentometric method  using 0.0141 N AgNO3) were analyzed on-site by using unfiltered samples 

[25]. Meanwhile, the filtered samples were separated into two polyethylene bottles, one for the analysis of 

sulfate (SurfaVer 4 HACH method) and nitrate (NitraVer 5 HACH method) and the others to determine cations 
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and metals which were analyzed using flame atomic absorption spectrometry (FAAS, Shimadzu AA6800) for 

cations, inductively coupled plasma mass spectrometry (ICP-MS, ELAN DRC-e, Perkin Elmer) as for trace 

metal. The sampling, preservation, and transportation to the laboratory of the water samples were based on the 

Standard Method for Water and Wastewater Analysis [25]. All of the reagents were from analytical or equivalent 

grade and contaminant-free. All the laboratory equipments were pre-cleaned with 5% (v/v) concentrated nitric 

acid (HNO3) and then rinsed with distilled water to ensure that any contaminants or traces of cleaning reagents 

were removed before the analysis. Polyethylene bottles which are free from metal-containing material were used 

to collect the water samples to minimize interference of heavy metal analysis[25]. The accuracy of the result was 

determined by replicating samples (n2) with relative standard deviation and assessed by diluting ICP Multi-

Element Mixed Standard III (Perkin Elmer) in a series of concentrations with the same acid mixture used for 

sample dissolution. The water quality parameters that were considered for the analysis are turbidity, color, pH, 

EC, manganese (Mn), iron (Fe), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), TDS, total solids, chloride 

(Cl), ammonium (NH4), fluoride (F), carbonate (CO3), bicarbonate (HCO3), sodium (Na), calcium (Ca), 

potassium (K), aluminum (Al), magnesium (Mg), mercury (Hg), cadmium (Cd), selenium (Se), arsenic (As), 

chromium (Cr), silver (Ag), copper (Cu), zinc (Zn), sulfate (SO4), silica (SiO2), cobalt (Co), barium (Ba), 

strontium (Sr), nickel (Ni), and phosphorus (P). All of the concentrations were expressed in milligrams per liter 

(mg/L).  

 

2.4 Data analyses 

The data set was screened according to the charge balance error (CBE) proposed by Freeze and Cherry [7] to 

identify electrically unbalanced samples: 

%100x
mamc

mamc
CBE








    (1) 

Where;  

 υ is the absolute value of the ionic valence,  

 mc is the molarity of the cationic species, and  

 ma is the molarity of the anionic species.  

 

CBEs were calculated on each site by using the median concentration of the cations and anions. the inclusion of 

these samples in the calculations affecting the CBEs by less than 0.5%, the CBEs based on major ion 

concentrations were considered significant for this study. Although 36 water quality parameters were available, 

only 28 parameters consistently included in 56 sample data sets were chosen for multivariate analysis (data 

matrix: 28 × 56)The statistical analysis for water quality data sets were subjected to univariate analysis; range, 

mean, and standard deviation and multivariate analysis; and DA and PCA. DA was first applied to the groups or 

clusters among the stations, followed by PCA to extract and distinguish potential factors or sources of pollution 

contributing to variations in water quality measures.  

 

2.5 Analytical Methods 

DA is a multi-component statistical technique used to classify objects into mutually exclusive and exhaustive 

groups according to a set of independent variables.and and builds a discriminant function (DF) that operates on 

raw data for each group [26,27,28]:  

 

𝑓(Gi) = 𝑘𝑖 +∑ (𝑤𝑖𝑗𝑃𝑖𝑗)
𝑛

𝑗=1
                                         (2) 

Where;  

 i is the number of groups (G),  

 ki is the constant inherent to each group,  

 n is the number of parameters used to classify a set of data into groups, and  

 wj is the weight coefficient assigned by DF analysis (DFA) to a given parameter (pj). 

 

 DA was used to determine whether the groups differed in terms of the mean of a variable and use such 

variable to predict group membership [26]. All of the parameters (n = 28) were employed in the DA using the 
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standard, forward-stepwise, and backward-stepwise modes. In the forward-stepwise mode, the variables were 

included step by step, beginning with the most significant variable until no significant changes were obtained.  

 PCA is an analytical technique for multivariate data.that reduces many variables to few variables, without 

sacrificing too much of the information. PCA provides information on the most significant parameters based on 

spatial and temporal variations that describe the whole data set by excluding the less significant parameters with 

minimum loss of original information [4,27,29,30]. The principal component (PC) can be expressed as  

 

    zij = ai1x1 j + ai2x2 j + ... + aimxmj    (3) 

where  

 z is the component score,  

 a is the component loading,  

 x is the measured value of the variable,  

 i is the component number,  

 j is the sample number, and  

 m is the total number of variables 

 

 The PCs generated by PCA are sometimes not readily interpreted; therefore, rotating the PCs by varimax 

rotation is advised. The VF coefficients with correlations greater than 0.75 are considered as “strong” significant 

factor loadings, 0.75 to 0.50 as “moderate,” and 0.50 to 0.30 as “weak” [31]. The PCA explains relationships 

between measured variables, and thus be used to infer the hydrogeochemical processes that control water 

chemistry[32,33]. The PCA takes the data organized in a correlation matrix and rearranges them in a manner that 

better explains the structure of the underlying system that produced the data. Therefore, the matrix of correlation 

coefficients measures how well the variance of each constituent can be explained by its relationships with each 

of the variables. 

 

3. Results and Discussion  

 

3.1 Hydrochemical Characteristics 

The descriptive statistics of the measured three-year data set are summarized in Table 1, including the univariate 

(mean, standard deviation, minimum, and maximum) overview of the chemistry of surface water and 

groundwater in the study area. The pH of the groundwater sample analyzed in this study within the permissible 

limit of drinking water standard of 5.5 to 9.0 [34]. Samples from surface waters show pH values that the mildly 

acidic surface water significantly increased the pH values of the groundwater. Meanwhile, EC for groundwater 

in the study area varies from about 62 µS/cm to 166 µS/cm with the mean value of 118 µS/cm. Low 

conductivity was observed in the Langat River upstream (SL1) and downstream (SL2) of the study area. High 

turbidity value for surface water in the study area ranges between 328 and 699 NTU. The groundwater samples 

in the study area show low turbidity, indicating that BI in Jenderam Hilir can significantly reduce the turbidity 

value. Sulfate concentration in the groundwater lies between 3.0 and 14.0 mg/l while in the surface water it 

ranges from 3.0 mg/l to 15.0 mg/l.  Nitrate in natural water is due to organic sources or industrial and 

agricultural chemicals. Although nitrogen is an essential constituent of protein in all living organisms but the 

presence of , nitrate with a concentrations greater than 50 mg/l can cause cyanosis or blue baby syndrome among 

infants [35] and cancer in adults (WHO, 2008). The permissible limit for NO3- in raw water is 10 mg/l (DSM, 

2010). 

 The NO3- concentration in groundwater and surface water in the study area varies from 1.80 mg/l to 39.0 

mg/l. In Jenderam Hilir, high NO3- concentration of 39.0 mg/l can be observed at MW16 for the groundwater 

and 16.0 mg/l at SL1 for the surface water. The high nitrate concentration of nitrate could have resulted from the 

seepage of the liquids due to the occurrence of sewage and septic tanks, industrial effluents, and agricultural 

chemicals nearby. As MW16 is near the oil palm estate. Meanwhile, all of the groundwater samples from eight 

wells showed Fe2+ concentration higher than the drinking water standard, i.e. 0.3 mg/l. The Fe2+ concentration of 

groundwater was within 14.0 mg/l to 39.0 mg/l. Fe is a common constituent of various primary minerals such as 

biotite, pyroxenes, and amphiboles. The geochemical conditions of the study area are assumed to result in a 

predominant distribution of ferrous and ferric irons, though the definite existence of these minerals in the area 

has not been confirmed. The Ca2+ concentration ranges from 1.50 mg/l to 32.0 mg/l. The permissible limit of 
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Ca2+ concentration is 75 mg/l in drinking water standard (WHO, 2008). The Na+ concentration in the wells and 

surface water ranges is below the permissible limit of the Malaysia Drinking Water Standard (DSM, 2010). Ionic 

K+ occurs at fairly low concentrations in groundwater, and the major sources of K concentration in the study 

area could be from rainfall, rivers, potash feldspar, and micaceous minerals. The K+ concentration is in the range 

of show low K+ concentrations. 

 

3.2 Surface and Ground Water Classification  

Figure 2 illustrates the Piper trilinear diagram for the data obtained from the chemical analysis of surface water 

and groundwater samples from the study area. The diagram consists of two lower triangles that show the 

percentage distribution, on the milliequivalent basis, of the major cations (Ca2+, Mg2+, Na+, and K+) and major 

anions (SO4
2-, Cl-, CO3-, HCO3)..  

 Three chemical types of surface water and groundwater in the study area were recognized as (i) Calcium–

Sodium–Sulfate–Chloride–Bicarbonate facies (Ca2+–Na+–SO4—Cl-–HCO3-), (ii) Calcium–Chloride–Bicarbonate 

facies (Ca2+–Cl-–HCO3-) and, (iii) Calcium–Magnesium–Chloride–Bicarbonate facies. The Ca2+–HCO3- water 

type prevails in all the groundwater and surface water samples. The major cations dominant in the groundwater 

are Ca2+ and Mg2+. In well MW16, the Na+ and K+ ions are dominant compared to the other major cations. The 

water classification shows that the surface water and groundwater in this study area are connected. 

 

 
Figure 2. Piper trilinear diagram for the data obtained from chemical analysis of river, lake and groundwater 

sample from Jenderam Hilir.
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Table 1: Descriptive statistics (mean, SD (standard deviation), minimum and maximum) of the surface water quality of Jenderam Hilir. 

Parameter pH Turbidity EC TS TDS CO3 Cl SO4 NO2 NO3 F P NH4 Ag Al 

Unit  NTU µS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

River (N=9) 

Mean 6.84 199.8 68.2 167 61 0.67 10.3 7.67 0.66 9.05 0.3 0.17 0.57 0.1 1.6 

SD 0.39 229.92 60.22 98 23 0.24 6.23 3.69 1.35 4.25 0.1 0.26 0.75 0.1 2.7 

Min 6.3 8 2 60 16 0.5 4 1.5 0 3.3 0.3 0.01 0.25 0 0.2 

Max 7.7 699 161 370 98 1 24 15 3.9 16 0.5 0.81 2.4 0.3 11 

Lakes (N=13) 

Mean 6.94 8.44 60.31 12.2 53 22.3 0.62 29.9 7.69 2.85 0 1.17 0.31 0.2 0.3 

SD 0.18 9.3 39.94 12.6 27 11 0.22 12.9 4.23 1.69 0 0.91 0.11 0.3 0.2 

Min 6.7 0.5 2 3.1 20 4 0.5 3 2 1.5 0 0.25 0.25 0 0.3 

Max 7.3 25 147 38 108 40 1 53 18 7 0.1 2.6 0.5 0.8 00.7 

Groudnwater (N=28) 

Mean 6.46 158.92 84.85 20/7 177 55.6 0.65 48.3 9.5 4.15 0.9 2.57 0.32 0.3 2 

SD 0.48 223.14 67.14 16.2 195 27.2 0.23 29.8 7.57 3.94 4.6 7.51 0.12 0.3 4.7 

Min 5.6 10 2 4.6 44 22 0.5 0.5 0.5 1.5 0 0.25 0.25 0 0.3 

Max 8.1 1196 228 47 150 150 1 124 36 14 24 39 0.5 0.9 25 

 

Parameter As Ba Ca Co Cr Cu Fe Hg K Mg Mn Na Ni Pb Sr 

Unit mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

River (N=9) 

Mean 0 0.1 11 0 1.3 0.1 2.7 0.6 3.6 0.9 0.32 5.2 0.1 0 0 

SD 0 0 5.1 0 4.9 0 1.6 0.3 1 0.3 0.48 2.8 0 0 0 

Min 0 0.1 6.1 0 0 0.1 1.4 0.1 2.1 0.5 0.05 2 0.1 0 0 

Max 0 0.1 24 0.1 19 0.1 7.9 1 4.8 1.5 1.5 10 0.1 0 0.1 

Lakes (N=13) 

Mean 0.1 0.1 0 0.1 7.6 0 0.1 1.5 1.3 6.7 1.45 0.3 3.1 0.1 0 

SD 0.1 0.1 0 0 3.4 0 0 1.7 2.5 12 0.46 0.2 0.9 0 0 

Min 0 0.1 0 0.1 3.2 0 0.1 0.1 0.1 2.5 0.9 0.1 1.5 0.1 0 

Max 0.3 0.3 0 0.1 15 0.1 0.1 4.9 9 46 2.6 0.6 4.9 0.1 0.1 

Groudnwater (N=28) 

Mean 0.1 0.6 0.1 0.7 9.5 0 0.1 20 1.1 4.6 3.38 1.4 3.8 0.1 0.3 

SD 0.1 1.6 0.1 1.7 7.2 0 0 9.7 1.6 2.3 1.6 1.5 3.6 0 1 

Min 0 0.1 0 0.1 0.9 0 0.1 4.9 0.1 1.9 1.3 0.1 1 0.1 0 

Max 0.3 7.7 0.2 7.9 32 0.1 0.1 39 8 12 7.8 6 20 0.1 5.2 

 



3.3 Surface and Groundwater Spatial Pattern Discrimination 

In this study, the DFs were performed based on the raw data from three types of water samples, and similar 

classification matrixes (CMs) treated as dependent variables while water quality parameters were treated as 

independent variables The accuracy of classification using the standard, forward stepwise, and backward 

stepwise mode DAs were 100% (28 discriminant variables), 92% (6 discriminant variables), and 98% (13 

discriminant variables), respectively (Table 1). The Wilk’s Lambda test for standard mode gave a Lambda value 

of 0.027. The null hypothesis states that the means of vectors of the three groups (RW, LK, and GW) are similar 

to one another. The alternative hypothesis states that at least one of the means of vectors is different from one 

another. Since the enumerated p-value is lower than the significant alpha level (i.e. 0.005), one should reject the 

null hypothesis and accept the alternative hypothesis. The risk of rejecting the null hypothesis while it is true is 

lower than 0.001%. Thus, the three groups of samples are indeed different from one another because of their 

different characteristics. DFs and CMs obtained from standard, forward stepwise, and backward stepwise modes 

of DA are shown in Table 2.  

 

Table 2. Classification matrix for DA of spatial variations in surface water and groundwater interaction study at 

Bank. 

Samples  

 Samples assigned by 

DA Total 
% 

correct 
GW LK RW 

Sampling DA mode (28 variables)     

GW 27 0 0 27 100.00% 

LK 0 13 0 13 100.00% 

RW 0 0 10 10 100.00% 

Total 27 13 10 50 100.00% 

Forward stepwise mode (6 

variables) 

  GW 26 1 0 27 96.30% 

LK 0 13 0 13 100.00% 

RW 0 3 7 10 70.00% 

Total 26 17 7 50 92.00% 

Backward stepwise mode (13 

variables) 

  GW 27 0 0 27 100.00% 

LK 0 13 0 13 100.00% 

RW 0 1 9 10 90.00% 

Total 27 14 9 50 98.00% 

 

 Figure 3 presents the discriminant variables by DA into three groups, RW, LK, and GW, with 100% 

correct assignments. Using the forward stepwise mode, DA, pH, NO2-, NO3-, F-, Fe2+, and Mn2+ were found to be 

the significant variables. This result indicated that these parameters, which possess high variation, constituted 

the anaerobic redox parameters containing Fe2+ and Mn2+. In this study, redox process play an important role in 

changing the concentration of Mn2+ and Fe2+, which represent the minor portion of reduction processes in the 

aquifer, whereas the presence of NO3- is highly correlated with the existing major ion concentrations in the 

aquifer. In the backward stepwise mode of DA, 13 parameters (pH, TDS, EC, CO3-, HCO3-, NO2-, NO3-, P, NH4
-, 

Al, Fe2+, Mg2+, and Na+) were considered as the most significant parameters (p<0.05), as shown in their high 

spatial variation in the data set.  

 As identified by DA (backward step and forward step modes), box and whisker plots of selected 

discriminating parameters were constructed to evaluate different patterns associated with different water sample 

sources. Figure-3 shows the box and whisker plots of six variables of these water quality parameters during the 

period December 2013 to October 2014. The trend for NO3
- and Fe2+ suggested that the average concentration in 

rivers was the highest, followed by the concentration in lakes. In groundwater, the average concentration was the 

lowest, while Mn2+ had the inverse trend. Within groundwater, most of the Mn2+ detected was naturally 
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occurring. Six parameters that produced high variations based on the forward stepwise DA were used for further 

analysis. 

 

 
Figure 3. Box and whisker plots of some parameters separated by DA associated with the water quality data of 

Langat and Jenderam Hilir rivers, lakes and groundwater. 

 

3.4 Correlation between Variables 

The first step in factor analysis (FA) is to determine the parameter correlation matrix. The correlation matrix is 

used to account for the degree of mutually shared variability between individual pairs of water quality variables. 

PCA only considers the common hydrochemical variables of all samples taken from rivers, lakes, and 

groundwater. The correlation matrix of the 28 variables (Table-4) allows us to distinguish several relevant 

hydrochemical relationships (indicated by underlined values): (a) high and positive correlations between 

turbidity, total solid, NO2-, NO3-, NH4, Al3+, C2+, and SO4
2- (r=0.504–0.821 ) are attributed to river water 

hydrochemistry; (b) strong and positive correlations between HO3-, F, P, As, Fe2+, Mg2+, Na+, and Cl- represent 

groundwater influence toward rivers (r = 0.516–0.905); and (c) high and positive K and Hg are characterized 

toward the water chemistry of lakes (r = 0.604). However, pH, SiO2, total solid, HO3, P, Ag, and Al have weak 

correlations with all the variables, which indicates that all variables have different origins. Only Ag shows good 

correlation with conductivity, due to the increase of conductivity along with the dissolution of metals through 

ion exchange or oxidation–reduction reaction in a groundwater aquifer system. Na shows moderate correlation 

with Cl (0.68), indicating that a major source of these elements was influenced by marine deposits (Kenny Hills 

Formation), a process during groundwater flow through rock in the study area. The Na+ and Cl- contents detected 

in certain samples may also suggest the dissolution of chloride salts. The dissolution of halite in water release is 

equal to the concentrations of Na+ and Cl- in the solution.  

 

3.5 Source Identification Using PCA and Factor Analysis (FA) 

PCA was employed in this study to investigate the compositional pattern of common hydrochemical variables of 

all samples taken from rivers, lakes, and groundwater. PCA then strengthens its role in identifying the dominant 

process that controls the chemical components in both surface water and groundwater. An eigenvalue gives a 

measure of the significance factor, where the highest eigenvalue resembles the most significant. Eigenvalues 

greater than 1 are considered significant. Table-3 summarizes the PCA results, including the loadings, 

eigenvalue, variance contribution rate of each Varimac Factors (VF), and cumulative variance contribution rate. 

The loadings with significant absolute value in each VF are highlighted.  
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 To reduce the overlap of original variables over each principal component, a varimax rotation was 

conducted. The 10 factors are extracted to represent the contributions that influence the chemical composition of 

surface water and groundwater. The varimax rotated Factor Analysis (FA) results are presented in the Table-4 

with probable source types. In the Table-4, the eigenvalue is set to 1.0 as a threshold in order to limit the number 

of extracted factors. Factor loadings equal to or greater than 0.5 are considered significant. Ten factors obtained 

explain 83% of the total variance.  

 In Table 3, VF 1 explains 17.171% of the variance, which is highly attributed to As, Fe, and Mg. This 

factor suggests the significant contribution of groundwater hydrochemistry and of redox conditions. VF2 

elucidates 13.836% of the total variance, which has strong positive loading of F, P, and CO3. This VF represents, 

during pre-monsoon, the high loading factor of F concentration. The important source of F in groundwater is 

fluoride-bearing minerals such as fluorite, apatite, amphiboles, and micas, which may be due to the ion exchange 

of F, leaching of F-containing minerals, higher evapotranspiration, and longer residence time of water in the 

aquifer. These factors are also significant in groundwater flow. VF3 describes 9.59% of the total variance 

provided by a strong positive loading of color, turbidity, and total solid, which represents the surface runoff of 

sources. VF4 (8.715% of total variance) has a strong positive loading of EC, Sr, and SiO2. This VF can be 

explained by the groundwater contact with rock or weathered rock (Kenny Hills formations).  

 The hydrolysis and weathering of ranging silicate minerals to clay minerals such as kaolinite and illite are 

also explained by the fourth factor. Meanwhile, VF5, which contains 8.257% of the total variance, includes 

TDS, Ca, NH4, and SO4 as the highest mean concentrations found in river water and groundwater interaction, as 

well as in the discharge of untreated sewage and industrial waste into rivers. The association of TDS with higher 

Ca concentrations is caused by tanneries that use calcium carbonate to process raw hides and their effluent 

discharges into the river course. The substances in this VF are characteristic of input from surface water. They 

represent the substantial influence of surface water of the Langat River infiltration and control the groundwater 

quality. VF6 with 6.948% of the total variance has strong positive loadings of Na+ and Cl-, which indicate the 

groundwater interaction with rock (Kenny Hills formation) and are deposited into the marine environment. VF7 

explains 5.638% of the strong positive loading of Al, NO2, and NO3, which represent agricultural wastes based 

on nitrate found in the upstream of Jenderam Hilir.  

 

Table 3.  Pearson correlation coefficients for 13 hydrogeochemical variables of water samples. Coefficients are 

significant at the 0.05 level and those higher than 0.70 were shown as bold fonts. 
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Table 4. Loading of 28 hydrochemical variables on nine significant varifactors (VF).Coefficients are significant 

at the 0.05 level and those higher than 0.50 were shown as bold fonts. 

Variables VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 VF10 

pH -0.163 0.225 -0.117 -0.093 -0.046 -0.221 -0.004 0.78 0.087 0.136 

Colour 0.015 -0.066 0.877 0.085 -0.129 -0.16 -0.049 0.09 -0.015 -0.122 

Tur 0.145 -0.132 0.836 0.036 0.06 -0.039 0.058 -0.075 -0.066 0.397 

EC 0.278 0.339 0.225 0.633 0.381 -0.137 0.032 0.101 0.088 0.149 

TS 0.129 0.022 0.894 0.058 0.144 0.072 0.008 -0.03 -0.058 -0.053 

TDS 0.249 -0.046 0.158 0.087 0.842 0.061 0.058 -0.04 -0.021 -0.168 

Na 0.022 0.082 -0.015 -0.02 0.101 0.889 0.047 -0.065 0.076 -0.002 

K 0.012 -0.075 -0.078 0.011 0.151 -0.092 -0.034 0.075 0.893 -0.01 

Mg 0.864 -0.021 -0.024 0.123 0.293 0.199 -0.088 -0.046 0.057 -0.034 

Ca 0.031 0.227 -0.116 0.064 0.874 -0.023 -0.132 0.081 -0.018 0.015 

Mn 0.46 -0.184 -0.096 -0.1 0.103 -0.273 -0.202 -0.328 -0.08 0.001 

Fe 0.883 0.178 0.185 0.176 0.047 0.078 0.143 -0.046 -0.019 -0.049 

Al -0.05 0.324 0.15 0.034 0.053 0.058 0.694 -0.153 -0.011 0.176 

Hg -0.021 -0.022 -0.048 0.199 -0.191 0.189 -0.022 -0.033 0.866 -0.063 

Cl 0.155 -0.052 -0.09 -0.138 -0.018 0.884 0.01 -0.012 -0.006 -0.024 

F 0.089 0.952 -0.075 0.063 0.027 -0.01 0.133 0.032 -0.035 -0.045 

P 0.114 0.916 -0.036 0.141 0.053 -0.051 0.157 0.015 -0.011 0.021 

Ag -0.093 -0.39 -0.123 -0.782 0.018 0.177 0.003 0.11 -0.234 -0.065 

As 0.774 0.236 0.226 -0.245 -0.143 -0.059 0.212 0.026 -0.044 -0.068 

Cr -0.091 -0.06 0.056 0.017 -0.062 -0.017 0.056 0.06 -0.051 0.953 

Sr 0.287 0.057 -0.003 -0.601 0.083 -0.107 -0.097 -0.407 0.165 0.101 

SiO2 0.13 -0.458 0.044 0.582 0.079 -0.068 0.046 -0.328 0.3 -0.164 

CO3 0.041 0.917 -0.04 0.008 0.092 0.097 0.177 0.061 -0.043 -0.076 

HCO3 0.272 -0.14 0.311 0.09 0.433 0.163 0.001 0.59 -0.005 -0.065 

NH4 0.36 -0.279 -0.046 0.284 0.605 -0.021 -0.034 0.097 0.05 0.029 

SO4 -0.235 0.165 0.072 -0.247 0.733 0.105 0.176 -0.1 -0.008 0.066 

NO2 0.235 0.075 -0.072 0.052 -0.131 -0.053 0.905 0.043 -0.009 -0.056 

NO3 -0.054 0.251 0.015 -0.022 0.115 0.089 0.902 0.034 -0.04 0.062 

Eigenvalue 4.802 3.877 2.687 2.44 2.312 1.945 1.579 1.272 1.195 1.112 

Variability 

(%) 
17.149 13.847 9.595 8.715 8.257 6.948 5.638 4.543 4.267 3.971 

Cumulative 

% 
17.149 30.996 40.591 49.306 57.563 64.511 70.149 74.692 78.959 82.931 

 

 Al possesses higher concentrations derived from mining waste [36]. This VF describes the lakes–

groundwater–river water interaction. The presence of Al ions in the stream may result from industrial wastes, but 

is more likely to come from the wash water of drinking water treatments plants. This VF8 explains 4.543% of 

the strong positive loading of pH and HCO3. The relationship between HCO3 and pH reveals that the CO3–CO2 

equilibrium is an important pH buffer system in the surface water and groundwater of the study area. HCO3 

mainly originates from the dissolution of carbonate rocks present in the aquifer (Kumar et al. 2011), and from 

the reaction of CO2 with silicate minerals. These factors are strongly related to surface runoff. VF9 explains 

4.267% of the total variances of high K and Hg loadings. These components reflect the signatures of natural 

water recharge and water–soil–rock. The existence of K is mainly due to the rock–water interactions on 

potassium bearing feldspars and clay minerals, such as illlite and biotite-rich minerals. Hg describes the lakes 

and groundwater interaction from a former mining area. Past mining pollution had strong positive loadings on 

Hg, representing heavy metal pollution that may have originated from metal smelting. The last principal 

component, VF10 (3.91% of the total variance), contributes high and positive Cr, a specific pollutant. This 

finding provides evidence of industrial pollution such as dyeing or paint-processing operations. 

 

Soft Soil Engineering International Conference 2015 (SEIC2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 136 (2016) 012073 doi:10.1088/1757-899X/136/1/012073

11



4. Conclusion 

The result of the statistical analysis offers an overview of the main process responsible for the characteristic of 

the BI site in Jenderam Hilir; (i) The DA gave the best result of the redox parameters that contain Fe and Mn 

under anaerobic conditions, (ii) This study also found that the redox process had a significant role in influencing 

the variation of hydrogeochemistry concentrations in the studied aquifer systems, (iii) Mainly, the quality of 

groundwater, which was near the river bank of the Langat River and the lakes in Jenderam Hilir was affected by 

quality changes due to bank filtration, (iv) The study of rivers–lakes–groundwaters interactions at different 

sampling sites yielded an important data reduction, where six parameters (pH, NO2, NO3, F, Fe, and Mn) were 

close to 98% correct assignment, (v) On the groundwater flow paths, the effects of surface water fluctuations 

decreased with increasing distance from the river bank due to dilution, adsorption, reduction, and 

biodegradation, (vi) The variability of the concentrations in groundwater was also dependent on the changing 

water levels in the Langat River and the lakes, (vi) High water levels led to high infiltration potentials and less 

time for purification processes due to the shorter residence time in the aquifer. On contrary, the effects of back-

flooding during high water levels were not significant. The temporal (residence time) and spatial dimension 

(distance of flow path) of the aquifer passage determined the balance in groundwater quality for its use as 

drinking water, (vii)The quality of Jenderam Hilir groundwater is mainly dependent on the aquifer`s material 

type, material quantity, and quality of infiltrating surface water from the Langat River. 
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