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Abstract. Originally defined in the context of ecological systems and environmental sciences,
resilience has grown to be a property of major interest for the design and analysis of many
other complex systems: resilient networks and robotics systems offer the desirable capability of
absorbing disruption and transforming in response to external shocks, while still providing
the services they were designed for. Starting from an existing formalization of resilience
for constraint-based systems, we develop a probabilistic framework based on hidden Markov
models. In doing so, we introduce two new important features: stochastic evolution and
partial observability. Using our framework, we formalize a methodology for the evaluation
of probabilities associated with generic properties, we describe an efficient algorithm for the
computation of its essential inference step, and show that its complexity is comparable to other
state-of-the-art inference algorithms.

1. Introduction and Related Work

Originally defined in the context of ecological systems, resilience is now a property of major
interest for the analysis of many complex systems. Its definition is not always unanimous, but
researchers agree that resilience is a characteristic property of those ecosystems that, through
their history, are able to absorb extreme spikes and, although transformed, survive. The insect
populations of North-eastern American forests [1] are notable examples of such sustainable
systems. In the coming years, “resilient by design” networks and robotics system will possess
the ability to absorb disruption and to transform in response to external shocks, while still
providing their services. Resilience will also be implemented in welfare measures—such as flood
prevention plans and healthcare systems—helping making human society a more sustainable
system too.
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So far, the effort of the artificial intelligence community has been focused on narrowing down
the concept of resilience through its formalization, e.g., in constraint-based and non-deterministic
dynamic systems [2]. This approach is extremely general and it can be adapted to describe the
behaviour of a plethora of real-world systems but it comes at the cost of a limited predictive
power. The transition models in non-deterministic dynamic systems resemble those of Markov
decision processes but, lacking probability values associated to transitions, they do not tell which
future worlds are the most likely.

By exploiting hidden Markov models, we preserve much of the existing research and include
a fundamental aspect that was not investigated in earlier works: the unpredictability of the
real world. This is essential for any modelling that aspires to be consistent with the idea of a
“random world” proposed by Holling [1] and conditional probability distributions can be seen
as the stochastic extension of the non-deterministic transition functions. We also enrich the
existing discussion about resilience with another important layer of complexity, that is, partial
observability. The goal of our work is to be able to efficiently answer queries such as: “what
is the probability that Canada’s inflation rate will not drop below 1% in the next five years?”
or “with 95% confidence, what is the minimum size of a certain wild animal population, only
rarely observed?”.

In a seminal paper from 1973, Holling introduced the concept of “resilience of ecological
systems”. Resilient systems are not those systems that simply react to imbalances by quickly
returning to equilibria. Instead, when perturbed, they are able to find new sustainable
configurations. It is worth noting that Holling defines resilience in the context of what he calls
“the random world”: an environment that is intrinsically stochastic. Walker et al. [3] define
resilience as “the capacity of a system to absorb disturbance and reorganize while undergoing
change so as to still retain essentially the same function, structure, identity, and feedbacks”.

The first attempt to formally define the concept of resilience exploiting the tools of artificial
intelligence was provided by Overen, Willsky, and Antsaklis [4] and successively elaborated by
Baral et al. [5] and Schwind et al. [2]. The SR-model, proposed in [2], is the starting point of our
work and it is described in more detail in the background section. The most relevant difference
between these works and our methodology is the introduction of the ideas of probability theory
in the latter. The probabilistic framework on which we develop our analysis is that of hidden
Markov models. Their traditional applications are in signal and natural language processing,
however, their use to describe more complex dynamic systems has also proven to be fruitful [6].

The two most common types of inference tasks for probabilistic graphical models are marginal
and maximum a posteriori estimation. For these, HMMSs provide efficient algorithms that have
convenient linear time-complexity [7]. In this work, we are interested in the probability of
properties lasting over time, therefore, we cannot simply apply the state-of-the-art algorithms
for marginals or maximum a posteriori. Nonetheless, we show that the queries we need can be
implemented by an algorithm in the same complexity class (i.e. requiring the same amount of
computational resources).

2. Background

Before delving into the proposed methodology, we briefly review the theoretical background on
the two main aspects of this work: 1) the formal definition of resilience in sustainable systems;
2) and hidden Markov models.

The SR-model is a theoretical framework proposed by Schwind et al. [2] combining elements of
constraint-based systems and non-deterministic dynamic systems. It provides a formal definition
of resilience as a unifying property combining different aspects of three simpler properties:
resistance, functionality, and recoverability.
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2.0.1. Kinematics and dynamics The SR-model provides two separate formal descriptions for
the kinematics and the dynamics of a system: the first consists of unbounded sequences of
state-couples called “state trajectories” or SSTs:

SST:(CBSh’Yl)v(CBSQ,’}/Q),... (1)

The subscript index skims through discrete time steps. Each C' BS; represents a constraint-based
system composed of a set of variables X; and a cost function ¢;:

CBS; = (X; = {X}, X2,... },ci : D(X;) — RT). (2)
Finally, 7; € D(Xj) represents a complete assignment of the variables in X;:
i € Rl (3)

As a consequence, each SST corresponds unambiguously to a sequence of costs obtained by
plugging-in each ~; into the corresponding cost function ¢;:

Cl(’yl),CQ("yg),... (4)

The environment dynamics are described through a non-deterministic dynamic system DS:
DS =(CBS,A,t: CBS x A — P(CBS)) (5)

where CBS represents the set of all possible constraint-based systems C'BS;, A is the set of
actions available at each time step, and t is a non-deterministic transition function that, given
the current constraint-based system and an action, returns the set of possible constraint-based
systems at the next time step.

The kinematic description (SSTs and sequences of costs) is essential for understanding the
resilient properties and it is preserved in our proposed methodology. In this work, however, the
non-deterministic description of the dynamics is discarded for a probabilistic approach.

2.0.2. The resilient properties In this model, resilience is a boolean property of a state
trajectories SST. It can be seen as a unifying property, combining different desirable behaviours
of a dynamic system and it arises from three simpler properties of state trajectories: resistance,
functionality, and recoverability (see Figure 1).

l-resistance The resistance property expresses the fact that a trajectory never incurs in a cost
that is larger than a fixed threshold. Therefore, this property is parametrized by this maximum
acceptable cost.

Definition 1 Given a state trajectory SST = (CBS1,71),(CBS2,72),... and a positive
threshold | € R*, SST is said to be l-resistant if and only if each cost in its corresponding
cost sequence is less than or equal to the threshold I:

ci(vi) <1 Vei(w) € (er(m), e2(2),---) (6)

For example, any organization (e.g. the army of a sovereign nation) whose budget is assigned
periodically (e.g. yearly) by and external entity (e.g. the Department of Defense) requires to
satisfy this propery.
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f-functionality The functionality property tells us if the costs of a trajectory are, on average,
equal to or below a certain threshold. As in the case of resistance, this threshold parametrizes
the property.

Definition 2 Given a state trajectory SST = (CBS1,71),(CBS2,72),... and a positive
threshold f € RT, SST is said to be f-functional if and only if the arithmetic average of the
costs in its corresponding cost sequence is less than or equal to the threshold f:

| 88T
[5ST] Z ci(vi) < f (7)
=1

This property is important when we plan operations that span over multiple time steps (e.g
a trip lasting several days or weeks) on a fixed budget. From time to time, we might allow
ourselves to spend more than the daily allowance: what matters is our total expenditure (or the
global average).

(p, q)-recoverability The recoverability property concerns those systems in which costs over a
certain threshold can be accepted, but only as long as the system is able to return within normal
conditions before consuming a fixed, restorable, reserve.

Definition 3 Given a state trajectory SST = (CBS1,71), (CBS2,72), ..., a positive threshold
p € RY and a positive budget g € RT, SST is said to be (p,q)-recoverable if and only if every
time the sequence of costs exceeds the threshold, it also returns below (or at) it before that the
cumulative offset surpasses the reserve:

j—1

Vk s.it. cip(ve) > p, 37 > k st cj(y5) <pA Z(CZ(%) -p)<gq ()
i=k

An example of a recoverable system is the human muscle tissue: it can perform at maximum
intensity for a short time consuming a molecule called adenosine triphosphate, or ATP [§],
which is available in limited quantities in our body. To recover, the muscle needs to decrease the
intensity of the effort, and allow other metabolic pathways to replenish the initial ATP storage.
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1 2 3 4 5 6 7 8 9 10
i-th time
Figure 1. Example of a cost trajectory that is 40-resistant, 25-functional, (15,40)-recoverable

Hidden Markov models (HMMSs) can be seen a sub-family of both dynamic Bayesian networks
(DBNs) and state-observation models [7]. HMMs have a single discrete state variable S and
a single discrete observation variable O. A hidden Markov model is fully specified by the
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probability distribution of S at time 0, the conditional distribution of O given S at the same
time step, and the conditional distribution of S given S at the previous time step [9].

HMM = (P(SO),P(Ot | St)»P(StH \ St)) (9)

HMMs are commonly used for the tasks of signal processing and speech recognition [9] because
efficient (i.e. with computational time complexity that is linear with respect to the time horizon
of the model) algorithms exist for: 1) the estimation of the probability distribution of S, also
called the “hidden” variable, taking only assignments of O as input (filtering and smoothing
algorithms); and 2) the identification of the most likely sequence of assignments of S. To
formalize resilient properties in a probabilistic context, HMMs offer the probabilistic reasoning
of DBNs and the independence assumptions of state-observation models, while minimizing
representation size.

3. Methodology

In this section, we identify the shortcomings of the traditional HMM framework and suggest
how to improve it. On top of this extended model, we provide the definitions of trajectory of
states T'S and trajectory of observations T'O, and we show how to compute their probability
values.

3.1. Framework Fxtensions

We can imagine the single discrete state variable S of a HMM as a way to represent, by
enumeration, the state configuration that was encoded by the set of variables X, and assignment
v, in the constraint-based systems C'B.Ss. However, HMMs do not natively provide an important
element of the SR-model: a cost function ¢ to state the expensiveness, for the purpose of
resilience, of each assignment. In the following, the extension of the HMM framework with a
static cost function ¢, defined over the domain € of its (random) state variable S and taking
positive values in R, is called c-HHM (see Figure 2) and formally defined as:

(P(80), P(Oy | Sb), P(Sex1 | St),c: Q(S) — RF) (10)

A static, i.e. non time-varying, cost function means that our preferences do not change over
time.

3.2. Trajectories of States, Observations, and Costs

In the SR-model, the definition of the resilient properties is based on the concepts of SSTs and
their corresponding sequences of costs. In c-HMMs, we have similar constructs for states and
costs, as well as observations. The main aspect of novelty here is that these concepts are now
built on top of random variables [10] and, therefore, they also can be associated to probability
distribution functions. Given a c-HMM and a finite time horizon 7', we define its trajectory of
states T'S as the sequence of state variables S; Vi € {1,...,T}. This can be rewritten as:

TS :=S,5,...,5r (11)

Because S is a random variable, T'S is also a random variable that can take as value any possible
sequence of assignments of S of length T, i.e. ts = s1,89,...,87. Therefore, the number of
possible assignments of T'S grows exponentially with the time horizon:

UTS)| = [S)I" (12)

Because the mapping provided by the cost function c is entirely deterministic, each assignment of
T'S is unambiguously associated to a trajectory of costs tc = ¢(s1),¢(s2), ..., c(sp) and T'C' is also
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a random variable with |Q(TC)| < |Q(TS)| = |©2(S)|T. Considerations similar to those we made
for trajectories of states are also valid for trajectories of observations (70 := O1,02,...,07)
and their possible assignments (to := 01, 02, . ..,0r). If neither the transition model or the sensor
model contain probability values of 0, all possible sequences of states can occur and produce any
of the sequences of observations. Therefore, the number of possible configurations of a c-HHM
is:

(125)!- 12(0))* (13)

This represents how difficult inference, in general, could be in our model. We also observe that:
1) the state variable S is called the “hidden” variable because it is never directly observable,
meaning that which s value is actually taken by T'S is unknown too; while 2) the values taken
by the observations variable O are the pieces of partial information that we can always access.
Therefore, the kind of probabilistic inference we are interested in is the one dealing with the
|S|T probability values of the conditional probability distribution of T'S with respect to a given

to:
P(TS’tO):P(Sl,SQ,...,ST‘01,02,...,07“) (14)

DAy

Figure 2. The extended c-HMM framework unrolled over three time steps.

TG

3.8. Probability of Cost Trajectories and Properties
So far, we have seen that the resilient properties, once their parameters are fixed, can be
considered as boolean attributes of sequences of costs associated to SSTs. In the context of
the c-HMM framework, we say that an assignment of the trajectory of states ts = s1, 89, ...
enforces the property 7 if and only if its corresponding trajectory of costs tc = ¢(s1), ¢(s2), . ..
is statisfies the definition of that property, i.e. w(c(s1),¢(s2),...) = true. Computing the
probability distribution of parametric properties 7(k), such as resistance and functionality, with
respect to their parameters, can provide valuable insights, as shown in Figure 3.

The probability of property P(7) is equal to the sum of the probabilities of all the distinct
trajectories of costs in which 7 holds:

P(r) = Z P(tc;) (15)

Vie{i|n(tc;)=true}

In turn, the probability of a fixed assignment of the trajectory of costs tc is equal to the sum
of the probabilities of all the distinct trajectories of states that are mapped to it by the cost
function c. To simplify the notation, we will also use C(ts) to indicate the tc = ¢(s1),c(s2),. ..
resulting from the application of the cost function ¢ to SST assignment ts.

P(tc) = > P(ts;) (16)

vie{i|C(ts;)=tc}
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By plugging Equation 16 into Equation 15 we can compute the probability of a property = as
a function of the probabilities of distinct assignments of the trajectory of states (Equation 17).
We observe that all the possible assignments of T'S are “distinct” by definition, even if many of
them could be mapped by c¢ to identical trajectories of cost.

P(r) = > > P(ts;) (17)

Vie{i|m(te;)=true} Vje{j|C(tsj)=tc;}

3.4. Conditioning w.r.t. the Trajectory of Observations

When we are able to observe the system, we become interested in computing the conditional
distribution of 7w with respect to the assignment of the trajectory of observations to. To do so,
we need to update Equation 17 by conditioning on both sides using to:

P(r | to) = Z Z P(ts; | to) (18)

Vie{i|n(tc;)=true} Vie{j|C(ts;)=tc;}

Equation 18, shows that computing the probability of a property =, given an assignment of
the trajectory of observations to, consists of two different subproblems:

a) identifying which assignments of the trajectory of states TS map to assignments of the
trajectory of costs T'C' such that the property is statisfied;

b) computing the conditional probability of these assignments of T'S with respect to the
assignment of the trajectory of observations to.

The problem at point a) strictly depends on the nature of the property we are evaluating and
it is discussed further later on. Instead, we now approach the second problem which is more
general and can be addressed combining different inference methods for HMMs.

)
oo =
T T
AY
LH(

e 2 2
ORI
T T

P(z-resistance)
]
D
T

|

z-resistance

Figure 3. Probability distribution of parametric resistance in an example where Vs, ¢(s) €
[1,...,5]. The discontinuity around 2 shows the critical threshold for the property.

3.4.1. Conditional probability of a finite assignment of the state trajectory: P(si,...,sr|o1,...,o0r)
A highly inefficient way to find this probability value consists of computing the complete joint
probability distribution (JPD) of the c-HMM over the time horizon T—because HMMs are
Bayesian networks, their JPD is equal to the chain product of all the conditional probability
distributions (CPDs) in their nodes—then, conditioning by the evidence of to, and finally re-
normalizing the entire distribution. This is not a good approach because computing the JPD
requires time and space complexity of (|S|-|O[)T. A more efficient approach to the computation
of the conditional probability of a finite state trajectory assignment si,...,sr with respect to
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the observation trajectory assignment oy, ..., or can be found using the Bayes’ theorem:
P(Sl,...,ST ‘ 01,...,0T) =
_ P(o1y.y01 | 51y y57) - Plstyy57) (19)
P(017' "70T)

Equation 19 shows how to decompose the problem into three simpler computations that can be
tackled separately.

Probability of: o1,...,0r | s1,...,s7 Given an assignment of the state variables, the conditional
probability of a sequence of observations can be computed as the product of the appropriate
entries of the sensor model.

T
P(Ol,...,OT’31,...,ST):HP(Ot:0i’Stzsi) (20)

=1

Probability of: s1,...,sr The probability of an assignment of the the trajectory of states T'S,
notwithstanding the values taken by the observations variables, only depends on the transition
model P(Sy4+1 | St) and the ground belief P(Sy). First, we need to compute the probability of
S1 taking the value of s1 as P(S1 = 51) = > yseqqs) P(Si+1 = s1 | St = s)P(So = s); then, the
probability of the entire trajectory can be computed multiplying the appropriate entries of the
transition model:

T
P(Sl, .. .,ST) = P(Sl = 51) . HP(StJrl = S; | St == Sifl) (21)
i=2
Probability of: o01,...,0r The computation of this latter factor is the trickiest: it can

be performed efficiently by applying a dynamic programming technique called Forward
algorithm [11]. This algorithm iteratively computes the quantity P(o1,...,orp,sp)—which is,
from now on, re-written as F'(T, sp)—using the transition and sensor models. The initialization
step of the Forward algorithm is:

V.TEQ(S) F(l,l’):P(SlziL‘)-P(Ol:Ol|31:a}) (22)

The distribution of P(S7) can be computed in the same way we did for Equation 21. Then, the
t + 1 iteration step of the Forward algorithm is:

Yz € Q(5) Ft+1,2) =
> Flt,y) P(Sy1=z|S=y) - P(O;=o01|S =x) (23)
Vye(s)
Finally, having iterated the algorithm until 7', P(o1,...,or) is computed as the sum over all

possible values of Syp:

P(o,...,or)= Y  F(T,z) (24)

vzeQ(S)
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3.5. Considerations on Time Complexity

Having how to compute P(s1,...,s7 | 01,...,07), we now examine its efficiency. We assume
that querying the sensor and the transition models for any of their elements involves a constant
and negligible delay. The computation of the P(oi,...,or) factor is the quickest: starting
with an initialization value of 1, we need to multiply it T times by the correct entry of
the sensor model. Therefore, the time complexity of computing P(o1,...,or) is O(T). The
factor P(s1,...,sr) is obtained through [€2(S)| multiplications and |2(S)| — 1 sums, to find
P(S1 = s1), and T'— 1 products by entries of the transition model. Its time complexity is equal
to O(|Q(S)| + T). Finally, the Forward algorithm has a run time of O(|Q2(S)|? - T) [11], plus
12(5)| — 1 additions to compute P(o1,...,or). Hence, the computation of P(oy,...,or) using
the Forward algorithm is the slowest of the three. Indeed, this is also the overall time complexity
of P(s1,...,87|01,...,07):

time-complexity: O(|Q(S)|? - T) (25)

This result arises from the consideration that all the three computations of Bayes’ theorem
factorization in Equation 19 are independent (from a computational point of view, not with
regard to probability) and, given sufficient resources, they can be can be performed in parallel,
with the last one strictly dominating the others.

Most importantly, we observe that, if the time horizon is much larger than the number of
states (i.e. T > |Q(S)|), this probabilistic inference algorithm has an overall time complexity
dominated by O(T'). This result places our algorithm in the same time complexity class of
other well-known inference algorithms for HMMs: the Forward-backward algorithm for the
computation of smoothed marginals distributions, P(S; | to); and the Viterbi algorithm for the
computation of the most likely sequence of hidden variables, argmaxpg P(T'S | to) [7].

3.6. Considerations on Space Complexity
With regard to space complexity, we first have to consider the data structures necessary to
represent the c-HMM framework: P(Sp) has size of O(|S|), P(O; | Si) of O(|Q2(S)] - |©2(0)]),
P(Si11 ] St) of O(|2(9)]?), and ¢ of O(|2(S)]). The input of our inference queries consists of two
vectors, S1,...,s7 and o1, ...,or, having size of O(T) each. The computation of P(o1,...,o0r)
only requires to iteratively multiply the result of a previous product and finally store this single
floating point value, hence, its space complexity is O(1). Similarly, the factor P(s1,...,sr) can
be computed by repeatedly storing the result of successive additions and and multiplications in
the same memory cel and it has space complexity of O(1). Finally, the execution of the Forward
algorithm demands a chunk of memory of O(|2(5)]), again dominating the other two factors.
As a results, the performance of the computation of P(si,...,sr | 01,...,0r) can be
optimized by using ad hoc memory components for its three parts:

1) model: O(|Q(S)] - |2(0)] + |S|?)
space-compl. { 2) input: O(T) (26)
3) algorithm: O(|2(S)])

This also means that the memory requirements of the inference algorithm itself do not depend
on the time horizon T'. In most practical cases, in which 7" > [©2(.5)], the memory bottleneck will
be represented by the memories dedicated to the storage of the input sequences si,...,sp and
01,...,0p. Figure 4 summarizes the time and space complexity relationships of our algorithm
and its input.
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Figure 4. Complexity growth of the inference algorithm with respect to the time horizon 7" and
the size of the state domain |S|. In the legend, tc and sc are abbreviations for time-complexity
and space-complexity, respectively.

4. Conclusions

In this work, we proposed to formalize the resilient properties of resistance, functionality, and
recoverability over the timed probabilistic framework of hidden Markov models. To do so, we
extended the HMM definition to include a cost function. Then, we defined an inference algorithm
able to answer the queries required for probabilistic property checking over this model. The
algorithm has been implemented and tested in the MATLAB-compatible scripting language
Octave. Finally, we analyzed the space and time complexity of this inference algorithm, as well
as the specific complexity of checking generic properties.
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