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Abstract. The paper deals with application of physical-empirical models for the 

thermodynamic description of the bcc Fe-Cr alloys and phase equilibrium, as well as prediction 

of behavior of the temperature dependences of the specific heat of alloys. This approach 

allowed performing verification of ab-initio calculations results obtained by different authors 

for the mixing enthalpy at 0K which were used to assess the chemical part of the mixing 

enthalpy. Analysis of calculated phase diagram fragments and the temperature dependences of 

heat capacities for two alloy compositions and their comparison with experimental data, has 

allowed us to estimate the degree of reliability of various approximations used in ab-initio 

calculations, and thereby realize their verification for further practical use. 

1. Introduction 

Ferritic steels are considered as promising for use as reactor fuel element cladding of the new 

generation IV, as well as the first wall of future fusion reactors. This is due to their low creep and good 

corrosion resistance at elevated temperatures [1]. Long duration of the material exploitation under 

irradiation and elevated temperatures is responsible for kinetic processes, due to diffusion, which lead 

to the changes of its structural and physical properties that in turn can lead to cracking and fracture of 

the material. For understanding the diffusion processes taking place in those materials is expedient to 

conduct the computer simulations. In its turn the suitable interatomic potentials (IP) which are used, 

for example, in the embedded atom model (EAM) are needed to simulate the kinetic processes. IP 

parameters are frequently calculated by fitting to the ab-initio calculations.  The Fe-Cr system is a base 

for development of ferritic steels, therefore great attempts of obtaining reliable IP for ferromagnetic 

bcc Fe-Cr alloys are carried out for a long time. In recent 10 years ab-initio calculations of the mixing 

enthalpy (ΔH) of ferromagnetic bcc alloys at 0K were carried out in many works, see for example [3-

5] and Figures 1 – 3. In particular, in the work [6] “a fitting” to values of ab-initio calculations of ΔH 

calculated in [4] was made for obtaining the IP.  
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Calculation of ΔH differs between ΔH obtained in [4, 6] and ΔH obtained in [3]. In this work, a 

verification of ab-initio calculations of ΔH conducted in [3-5] is carried out by the thermodynamical 

simulation.  

2. Description of the model 

According to [7], the Gibbs energy of mixing of bcc Fe-Cr alloys depending on composition and 

temperature without taking into account a short range order was formulated as a partition function of 

non-interacting subsystems: 
4 2
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where the molar mixing energy of bcc alloys is described with respect to the bcc phase of the pure 

components by the formula:     
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In the formulas (1) and (2) x is the mole fraction of Cr, T – temperature, R – the gas constant,  j – 

index runs on all those non-interacting statistical subsystems: 1 - elastic, 2 - vibration, 3 - electronic 

and 4 - magnetic parts of the Gibbs energy of mixing. 

)0,(xGchem


 - the chemical part of the mixing energy at 0K was described as a difference between 

the free mixing energy of alloys calculated by ab-initio calculation at 0K and the energy sum caused 

by the static displacements of atoms from their ideal lattice nodes formulated in a frame of the elastic 

theory, and the magnetic part of the free mixing energy, see the following formula. 

)0,()0,()0,()0,( xGxGxHxG magelastchem 
   .                                     (3) 

Details of used physical - empirical models are described in [7]. 

 

3. Calculated results 

The concentration dependencies of physical properties of bcc Fe-Cr alloys which were approximated 

according to experimental data of the alloys taken from literature, namely, heat capacity electronic 

coefficients, thermally expansion coefficients and the mean magnetic moments, Debye and Curie 

temperatures, were used for calculating the energy parts (2).  

 

 

 

Figure 1. The calculated concentration 

dependences: ▲ - the mixing enthalpy H of 

ferromagnetic bcc Fe-Cr alloys at 0K, according 

to [3]; Gelast - the energy of elastic distortions of 

the crystal lattice; Gmag , Gchem – the magnetic and 

the chemical energy parts. 

Figure 2. The calculated concentration 

dependences: ▲ - H of ferromagnetic bcc 

Fe-Cr alloys at 0K, according to [4]; Gelast - 

the energy of elastic distortions of the crystal 

lattice; Gmag, Gchem – the magnetic and the 

chemical energy parts. 
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Calculated Gibbs mixing energy was used for calculation boundaries of bcc Fe-Cr alloys (a more 

detailed description is given in [7]) and the temperature dependence of the isobaric heat capacity. In 

contrast to the work [7], in this paper, various options to describe the enthalpy of mixing solutions, 

H, obtained using ab-initio calculations by different authors: Mirzoev, Abrikosov and Korzhavyi [3-

5] have been discussed.  

The graphs of enthalpy of mixing alloys obtained by those authors and corresponding calculated 

mixing energy of chemical interaction, )0,(xGchem


 , are shown in figures 1-3. The bcc Fe-Cr alloy 

boundaries and spinodal line calculated in this work using different input data of enthalpy of mixing 

alloys H at 0 K obtained in [3-5], are shown in Figure 4 in comparison with experimental data taken 

from [9-11].    

  

 

 
Figure 3. The calculated concentration 

dependences: ▲ - H of ferromagnetic bcc Fe-

Cr alloys at 0K, according to [5]; Gelast - the 

energy of elastic distortions of the crystal 

lattice; Gmag, Gchem – the magnetic and the 

chemical energy parts. 

Figure 4. The calculated solubility and spinodal 

curve of bcc Fe-Cr alloys obtained by ab-initio 

calculations, shown in Figures 1-3, in 

comparison with the experimental data taken 

from [9-11]; the arrows show coordinates of 

configurational points of the Fe-21 at.% Cr 

alloy. 

 

4. Discussion 

The boundaries of bcc Fe-Cr alloys are shown in Figure 4 without the  - phase which exist in the 

experimental phase diagram [8]. Namely, the upper part of the calculated phase boundaries, being 

above 748K is in a metastable state. If the H(x,0 K) dependence obtained by Mirzoev will be used for 

bcc Fe-Cr alloy boundary calculations then the critical point becomes above 1200 K and therefore the 

results of work [3] can not be considered as reliable evidence.  

The critical point of the curve of bcc alloys boundary obtained by the data calculated in work [4] is 

about coincided with the critical point of the experimental diagram [8]. But because of the present the 

σ- phase in the equilibrium diagram such critical point location can not be trusted as well. Therefore, 

in our opinion, the data obtained in [5] should be preferred.  

The calculated dependencies of isobaric heat capacity of Fe-6.7 at.% Cr and Fe-21 at.% Cr alloys 

are shown in Figure 5 in comparison with experimental data taken from [9]. The two-phase area 

(α+α’) of the phase diagram is calculated by the formula (4) [12]: 
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where   - the mole fraction of bcc - phase of the Cr-rich alloys (or ’- phase).  

 

 

Figure 5. The temperature dependences 

of isobaric heat capacities for Fe-6.7 

at.% Cr and Fe-21 at.% Cr alloys 

calculated using the results of ab-initio 

calculations of the mixing enthalpy at 

0K [4, 5] in comparison with the 

experimental data (Δ -Xiong, ○ -Inden) 

taken from [9].  The temperatures of the 

heat capacity jumps of Fe-21 at.% Cr 

alloy are shown by arrows. 

One can learn from those graphs that when “moving” down by temperature from the high 

temperature area to the lower area the first heat capacity jumps could be seen when the alloys transit 

from paramagnetic to ferromagnetic state. The difference in heat capacity jumps between experimental 

and calculated data of the Fe-21at.% Cr alloy is due to insufficiently accurate approximation of Curie 

temperature, it can be expected that a more accurate description would eliminate this misleading. 

By the further lowering temperature, the second jumps could be seen (at 660K or 810K- figure 5 

using data of work [5] or [4] accordingly) when the configuration point for composition of the Fe-21 

at.% Cr alloy transits from one phase area (α) to the two phase area (α+α’) of the phase diagram 

(shown by arrows in figure 4).  

This obtained result can be used for verification of models employed in ab-initio calculations of the 

mixing enthalpies at 0K. For example, if one will take the Fe-6.7 at.% Cr or Fe-21 at.% Cr alloy and 

carry out the heat capacity measurements at 280K or 780K correspondingly then according to the 

obtained results in the present study the heat capacity jumps don’t be expected at these temperatures.    

 

5. Conclusions 

The calculated boundary of bcc Fe-Cr alloys and temperature dependencies of heat capacity of two 

alloys were accomplished by using ab-initio calculations of the mixing enthalpy [3-5] and presented in 

Figures 4 and 5. The calculated results of alloy heat capacities can be recommended the experimenters 

for accurate definition of the phase boundaries of bcc Fe-Cr alloys, in particular for the Fe- rich alloys.  

The obtained result allows to conduct verification of those ab-initio data by caring out the 

experimental researches and thus to help researchers involved in the kinetic simulations in the choice 

of the inter-atomic potentials. 

 

Acknowledgments 

The research was supported by grants for RFBR projects 09-03-00983-a, 13-03-00482-a and by 

Chemistry and Materials Science Branch of the Presidium of Russian Academy of Sciences, project 

OKhNM-02. 

MEEDPA10 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 130 (2016) 012065 doi:10.1088/1757-899X/130/1/012065

4



References 

[1] Bonny G, Pasianot R C, Malebra L, Caro A, Olsson P and Lavrentiev MYu 2009 J. Nuc. Mater. 

 385(2) 268 

[2] Daw M and Baskes M 1984 Phys. Rev. B 29 6443. 
[3] Mirzoev A A, Yalalov M M and Mirzaev D A 2003 Phys. Met. Metallogr. 97 (2) 310  

[4]  Olsson P, Abrikosov I A, Vitos L et all. J.Nucl. Mater. 2003 321 84 

[5]  Korzhavyi P A et all. Phys.Rev. B 2009 79 054202  

[6]  Wallenius J et all. Phys. Rev. B 2004 69 094103  

[7]  Udovskii A L and Vasil’ev D A 2015 Russian Metallurgy (Metally) 3 237 

[8] Massalski T, Okamoto H and Subramanian P R 1990 Binary Alloy Phase Diagrams, 2nd edition 

 (3 volumes) (SAM International (OH)) 

[9] Xiong W et al. 2011 CALPHAD 35 355 

[10] Cieslak J, Dobiel S M and Sepoil B 2000 J. Phys.: Condens. Matter 12 6709-17 

[11] Miettinen J 1999 CALPHAD 23 (2) 231  

[12] Udovsky A L 2011 Russian Metallurgy (Metally) 9 920  

 

 

MEEDPA10 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 130 (2016) 012065 doi:10.1088/1757-899X/130/1/012065

5


