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Abstract. The paper presents the results of studies of physical and mechanical properties, he-

lium and hydrogen behavior in vanadium-titanium alloys depending on titanium content. In 

particular, the results of helium swelling research, thermal desorption studies of helium and 

hydrogen behavior, results of internal friction measurements, measuring amount of hydrogen 

retained introduced by various methods. It was shown that the addition of titanium to vanadium 

have nonmonotonic influence on the behavior of implanted helium and hydrogen, as well as on 

the physical and mechanical and radiation properties known in literature. It is expected that 

such an abnormal influence of titanium on various properties of vanadium-titanium alloys oc-

curs because of the interaction of vanadium and titanium atoms with atoms of interstitial impu-

rities. 
 

1. Introduction 

The properties of vanadium alloys are of considerable interest to researchers because vanadium con-

sidered a promising material for use as a structural material in fast and fusion reactors. Vanadium and 

its alloys exceed a number of other candidate materials on complex of some properties such as specific 

strength, drop of induced activity and etc. Of greatest interest are alloys on the base of system vanadi-

um-titanium. A number of investigators has been observed that alloying by titanium nonmonotonically 

influences some alloys properties [19]. It is shown [10] the data the system of V-Ti alloys is abnor-

mal on change of physical-mechanical, radiation and other properties depending on content of alloying 

element, especially at low concentration area from a few tenths to a few percents of titanium. It is also 

noted that the mechanical properties, creep, radiation swelling of vanadium alloys significantly depend 

on the presence and concentration of interstitial impurities (O, N, C etc.). 

 

2. Experimental results 
2.1. Internal friction 

Measuring temperature dependences of logarithmic decrement damping of oscillations (abbreviation 

IF for later use to denote of internal friction) is one of the methods for investigation allowing to ex-

plain the processes occurring in the interaction of alloy atoms with interstitial impurities. Vanadium 

and its alloys with 0.3, 0.5, 0.7, 1, 5 and 10 wt.% Ti have been investigated by IF [11]. Measurements 

were carried out at temperature range from room temperature up to 11231173 K. Table 1 shows the 

contents of oxygen and nitrogen in the initial samples and after measurement of IF. It is seen that in 

the alloy V-5 wt.% Ti (as well as in other alloys with titanium) the concentration of oxygen is signifi-

cantly higher than in the initial vanadium. Oxygen and nitrogen content increases during heating at IF 

measurements.  
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Table 1. The contents of oxygen and nitrogen in initial V (1), alloy V-5 wt.% Ti (3) 

and in V after measurement of IF (2) [11]. 

№ The sample О2 (%) Standart 

deviation 

N2 (%) Standart  

deviation 

1 V 0.081 0.0098 0.009 0.0003 

2 V 0.098 0.0088 0.012 0.0024 

3 V5% Ti 0.321 0.012 0.0064 0.0003 

 

Investigations of alloys with 0.3, 0.5, 0.7, 1 and 10 wt.% Ti shown that only single peak is at tem-

perature of 498500 K in IF spectra of vanadium, and it is the oxygen maximum [11]. In alloys with 

titanium there appear two additional peaks. The peak intensities of IF increase with increasing of Ti 

concentration up to 0,5 wt.%, decrease with increasing of Ti contents up to 5 wt.% and increase again 

with increasing Ti concentrations to 10%. All three peaks disappear substantially at a high content of 

titanium. A small peak is in the region of the maximum II only, but there is a maximum IV at 748 K. 

That is, titanium nonmonotonically affects the internal friction of alloys. Microhardness and mechani-

cal properties of alloys change at the same regularity depending on titanium concentration in vanadi-

um (Table 2). 

 

Table 2. Mechanical properties at room temperature of several alloys of 

vanadium [3]. 

Alloy в, МПа   (%)  (%) HV (Мпа) 

V1% Ti 688  0  0 2863 

V2.5% Ti 618 12.5 23.7 1873 

V5% Ti 525 26.5 77.9 1687 

V10% Ti 628 27.4 66.5 1900 

 

A number of assumptions were made in the analysis of experimental results [11]. Oxygen con-

tained in the sample can interact only with the vanadium atoms. In so doing each oxygen atom inter-

acts with its closest atom disposed in the center of the BCC lattice of vanadium. The height of maxi-

mum I is proportional to number of interacting pairs of O-V, i.e. to oxygen content. 

Titanium captures part of available oxygen in solution at presence Ti in vanadium due to a greater 

affinity for oxygen than that of vanadium (enthalpies of formation of oxides TiO, Ti2O3, VO and V2O5 

are 524.17, 1516.50, 426.38 and 1254.00 kJ/mole, respectively [12]). Whereby the oxygen peak height 

decreases. Apparently, part of titanium atoms forms a bond with vanadium atoms also creating a pair 

of Ti-V and a maximum III in the IF spectrum [11]. The reason for maximum III increase in the alloy 

with 0.5 wt.% Ti compared to 0.3 wt.% Ti is obvious, since a part of oxygen atoms are already occu-

pied, and increase the titanium content leads to an increase in the number of pairs Ti-V.  

However, peaks II and III are reduced with further increasing of titanium content, i.e. number dou-

ble bond reduced. It can be explained reducing of number of pair interactions with increasing titanium 

content if it is granted that titanium connects the connection of oxygen and vanadium to itself when 

titanium content greater than 1%, forming ternary complexes V-O-Ti with higher activation energy 

than binary complexes. In fact, alloy with 5 wt.% Ti gives a small maximum at 748 K. As this takes 

place, this maximum is increased approximately two times with doubling of titanium concentration 

[11]. It seems reasonable to say that this maximum created by complex of three atoms of Ti-O-V lo-

cated in the nearest distances in the titanium lattice [13]. If this is so, the formation of same complexes 

of atoms can be viewed in different alloys, such as in our case: the same complex Ti-O-V with approx-

imately the same activation energy, but in vanadium-based alloy. 

One of the major reasons for non-monotonic dependencies of V-Ti alloys properties on titanium 

content can be peculiarity of interaction of V and Ti atoms with interstitial impurities. As discussed 
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above, number of binary complexes O-V, Ti-O and Ti-V increases with increase of Ti content and, 

apparently, their concentrations reach a maximum in the alloy with 0,5 wt.% Ti. A maximum strength 

(microhardness) of V-Ti alloys is observed approximately for the same concentration of titanium. 

Heights of IF peaks caused by binary complexes reduced due to formation of an increasing number of 

ternary complexes V-O-Ti with further increase of the Ti concentration [11]. Accordingly, the strength 

properties of alloys reduced also. In the alloy V-5 wt.% Ti, peaks due to double bonds are virtually 

absent, and almost all the complexes are ternary. There is a minimum of strength properties in this al-

loy (see Table 2). Based on these results, one can conclude that double complexes in V-Ti alloys are 

more effective detents for dislocations than triple bonds, causing hardening of alloys and decrease of 

their ductility. Repeated increase the strength properties of the alloy with 10 wt.% Ti caused by dou-

bling the number of ternary complexes as compared with V-5 wt.% Ti alloy as demonstrated an in-

crease two times the peak height of IF in the first alloy [11].  

 
2.2. Regularities of helium behavior  

Regularities of gas swelling as well as capture, retention and release of helium were investigated in 

vanadium-titanium alloys irradiated by helium ions up to fluence of 510
20

 He
+
/m

2
 at 273 and 923 K 

[1416]. It was shown that a nonmonotonic influence of titanium on the helium porosity parameters 

and gas desorption peaks temperature as on IF and mechanical properties cited above. 

In studying the effect of alloying elements on the behavior of implanted helium in vanadium alloys 

it was supposed [14, 16] that having a larger size titanium atoms ("oversized" atom) create local com-

pression regions of in vanadium lattice, which are sinks for radiation vacancies during low-

temperature irradiation (273 K). It was found several high temperature maxima of gas release during 

investigations the behavior of implanted helium by means of thermal desorption spectrometry (TDS). 

Their appearance was explained by that vacancies trapping the helium atoms along with simple com-

plexes of type HemVn (He is atom of helium, V is vacancy, m and n are their number in the complex, 

respectively) in pure vanadium form thermally more stable complicated complexes in V-Ti alloys also. 

This leads to an increase of helium release temperature on doping titanium to vanadium as compared 

with pure vanadium. All these complexes have different bonding energy and dissociate upon heating 

to different temperatures accordingly. As shown in [17], thermal stability of complicated complexes of 

HemMekVn type are significantly higher in the substitutional alloys with "oversized" atoms than that of 

simple complexes of HemVn type. The results of [14] shows that the temperatures of the main peaks of 

TDS nonmonotonically depend on titanium content in V-Ti alloys as in the case of above-mentioned 

dependencies of mechanical properties and IF on concentration of titanium. 

It is known [18] that complicated complexes of HemXVn type (X is oxygen or nitrogen) may be 

formed with interstitial impurities in the vanadium also, but their dissociation temperatures and bind-

ing energies significantly lower than that for HemVn for small values of n in a complex of HemXVn. 

However, cause of non-monotonic dependence of TDS peaks temperature and accordingly of activa-

tion energies of gas release on titanium content can be complex processes of various bonds/complexes 

formation of V-O(N). V-Ti, Ti-O(N) type, disappearance of the double bonds and the formation of 

ternary bonds of V-O(N)-Ti type only at high concentrations of titanium in V-Ti alloys [11]. 

It is unlikely formation of simple helium-vacancy complexes in pure vanadium at high-temperature 

irradiation (923 K) by He
+
 ions. However, thermally stable complex of HemTikVn type may be formed 

in V-Ti alloys, i.e. a significant part of helium and vacancies remains in the form of complicated com-

plexes in vanadium alloyed by oversized titanium. As a result highest helium swelling is observed in 

pure vanadium and swelling is significantly reduced in V-Ti alloys (Table 3). However, the effect of 

titanium on bubble parameters is nonmonotonic. The bubble sizes and swelling are reduced with in-

creasing of titanium concentrations up to 0.5 wt.%, they are increased when titanium content is 

0.7 wt.% Ti and are decreased again in alloys with 1, 5 and 10 wt.% Ti, during which titanium concen-

tration insignificantly affects on bubble density (see Table 3). Minimum size of bubbles and swelling 

are observed in the alloy V-10 wt.% Ti with a maximum content of titanium and in ternary alloy V-

4 wt.% Ti-4 wt.% Cr. It is possible that factors mentioned above play a role here, namely the for-
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mation of various double V-O(N), Ti-O(N) and ternary V-O(N)-Ti bonds purifying alloy matrix from 

oxygen and nitrogen resulting in redistribution of atoms and defects [11, 14]. 

 

Table 3. Parametres of helium bubbles in vanadium and its alloys (dmax and dav 

are maximal and average sizes, respectively, ρ is density, S is gas swelling) [14]. 

Material dmax (nm) dav (nm) ρ, (10
24

, m
-3

) S  (%) 

V  22 16 0.017  0.004 4.5  1.1 

V0.1% Ti  3.5 1.9 0.9  0.2 0.5  0.2 

V0.3% Ti  3 1.7 1.3  0.3 1.1  0.3 

V0.5% Ti  2.5 1.5 1.7  0.4 0.4  0.1 

V0.7% Ti  6.5 3.7 1.8  0.5 0.7  0.2 

V1% Ti  3 2.0 1.5  0.4 0.4  0.1 

V5% Ti  3.5 1.6 1.4  0.3 0.5  0.2 

V10% Ti  2  1 3.3  0.8 0.32  0.08 

V4%Ti4%Cr  2  1 3.6  0.9 0.21  0.05 

 

2.3. Capture, retention and release of hydrogen 

It was found nonmonotonic influence of titanium on behavior of hydrogen in alloys V-Ti with differ-

ent titanium content obtained in TDS studies [19]. The samples were saturated with hydrogen for 

2000 h at a temperature of 620 K in an autoclave. All the spectra exhibit low-temperature peak I in the 

temperature range of 780–790 K, the height of which depends on the alloy composition in contrast to 

its position on the temperature scale, and high-temperature peak II at 870–880 K, the height and posi-

tion of which on the temperature scale depend on the alloy composition. An increase in the titanium 

content in vanadium results in the change in the intensities of peaks I and II: at 0.5 wt.% Ti, the ratio 

between the heights of these peaks hardly changes; at 1 wt.% Ti, the height of peak I increases and the 

intensity of peak II decreases; and vice versa, at 5 and 10 wt % Ti, the height of peak I decreases and 

the intensity of peak II increases, this effect being more pronounced in the range from 5 to 10 wt.% Ti.  

It is seen from the dependence of the amount of hydrogen retained on the titanium content, which 

was determined by the TDS method [19], that 0.5 wt.% Ti reduces the hydrogen concentration by 

nearly a factor of 3 as compared with that captured by vanadium; at 1 wt.% Ti, the amount of hydro-

gen retained returns to the initial level; the maximum hydrogen concentration is observed in the                

V–5 wt.% Ti alloy and it is ~5.510
20

 at. H/g (ratio of the number of hydrogen atoms to the number of 

atoms of the alloy at. H/at. V is ~4.5%). The amount of hydrogen decreases to ~4.510
20

 at. H/g 

(at. H/at. V ~ 3.8%) as the titanium content increases to 10 wt.%. In such a way, the effect of the Ti 

concentration in V on the amount of hydrogen retained is as nonmonotonic as its effect on the position 

of peak II in the TDS spectrum. 

It was shown in study of the absolute amount of hydrogen retained in V–Ti alloys determined in 

the RHEN-602 gas analyzer, that the dependence of the amount of hydrogen retained on the titanium 

content is similar absolutely to that obtained by the TDS method [19]. 

The regularities of the capture, retention and release of hydrogen and the effect of alloying ele-

ments, in particular, Ti to V, on these processes are largely determined by the state in which hydrogen 

occurs in metals. It is widely believed that hydrogen in materials can exist in one of the following 

states: atomic (H
0
), ionic (H

+
 and H

–
), molecular (H2), in compounds with metals (hydrides of MmHn 

type), and in compounds with impurities (e.g., CH4, H2S). In addition, hydrogen can form complexes 

with point defects, for example, with vacancies HmVn (V means a vacancy; m and n are the number of 

hydrogen atoms and vacancies in the complex, respectively) and with vacancies and impurities 

HmXnVk (X means an interstitial impurity), and other complexes. 

Hydrogen was introduced into the samples in the autoclave without causing radiation damage to 

their structure. The presence of two gas release peaks in the TDS spectra indicates the existence of two 

main types of traps for hydrogen in vanadium and its alloys. Since the position of low-temperature 
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peak I on the temperature scale is independent of the chemical composition of the material, we have 

assumed that traps for hydrogen in the temperature range of 780–790 K are such defects, whose bind-

ing energy with hydrogen and hydrogen capacity are not affected by the presence of atoms of the al-

loying elements in solid solution Since vanadium hydrides are thermally unstable, namely, they dis-

solve already at temperatures from 270 K, such traps can be thermal vacancies [20], dislocations, grain 

boundaries, twins, discontinuities, and other hereditary defects, which in combination with hydrogen 

atoms have a positive binding energy. For example, in α-Fe, the binding energy is 0.45–0.53 eV for 

H–V (V is vacancy), 0.71–0.90 eV for H–Vm (m > 4), 0.24–0.62 eV for H–dislocation, 0.78 eV for H–

void, 0.75–0.70 eV for H–helium bubble, and 0.29 eV for H–TiC [21]. Calculations showed that in 

vanadium single vacancy can hold twelve hydrogen atoms when they are introduced simultaneously 

and six hydrogen atoms when they are introduced sequentially [20]. It is shown in [22] that in vanadi-

um alloys the chemical composition of the alloy is responsible for the amount of hydrogen trapped. 

The fact that the intensity (height) of peak I depends on the Ti content may indicate, for example, that 

titanium atoms change the concentration of this type of traps and/or the binding energy between them 

and hydrogen atoms. 

Traps of the second type, from which hydrogen release upon heating results in the appearance of 

peak II, are more effective for trapping the hydrogen. In this case, both the intensity of peak II and its 

position on the temperature scale are determined by the titanium concentration, whose influence on 

them and the amount of hydrogen retained are nonmonotonic [19]. It can be assumed that in addition 

to hydrogen captured by the traps of the first type, it is retained in titanium hydrides, or complex hy-

drides like Ti1–xVxHy, or γ-TiH2 titanium hydride, since the standard enthalpy of formation of titanium 

hydride is less (–144.4 kJ/mol [23]) than that of vanadium hydrides (–39.9 kJ/mol [24]). 

It was shown in Table 1, vanadium contained 0.08% O2 and 0.009% N2, and the V–5wt.% Ti al-

loy contained 0.32% O2 and 0.0064% N2. It is established using IF measuring methods and X-ray 

phase analysis that titanium at low concentrations participates in the formation of various complexes 

such as Ti–O, Ti–O–V, VTiOx, and others, and nitrides. This occurs because the enthalpy of their for-

mation is significantly less than that of titanium hydride [19], i.e., titanium in an amount of 0.5 wt.% 

(0.53 at.%) is not involved in the formation of hydrides, but is consumed for binding oxygen and ni-

trogen, the total concentrations of which in vanadium amounts to 0.58 at.% [11]. It seems that this 

should not lead to a decrease in the amount of hydrogen retained in the V–0.5% Ti alloy compared 

with that in vanadium. This reduction in the amount of hydrogen is possible in the case where oxygen 

and nitrogen in a vanadium solid solution promote retention of hydrogen; for example, they greatly 

distort the crystal lattice as interstitial impurities. Such interstitial places play the role of vacancy sinks 

and, hence, they trap hydrogen atoms. The titanium induced escape of oxygen and nitrogen from the 

solid solution reduces the number of such traps and leads to a reduction in the hydrogen concentration 

in the V– 0.5% Ti alloy [19]. 

The amount of hydrogen retained again increases with increasing Ti content to 1 and 5 wt.%, since 

only a part of titanium is involved in the formation of oxides and nitrides, while the rest forms hy-

drides with a dissociation temperature of 870 K and above, which becomes clear from comparing the 

temperature of peak II and the temperature at which γ titanium hydride decomposes [19]. 

It is shown in [25] that, at a content of ~10% Ti, vanadium begins to take up part of the electron 

density from titanium. Therefore, a decrease in the electron density of titanium atoms reduces the 

number of hydrides formed and, correspondingly, reduces the amount of hydrogen retained in the V–

10% Ti alloy as compared with that in the V–5% Ti alloy [19]. 

 

4. Conclusion  

The paper shows that the effect of titanium content on helium swelling, processes of energy dissipa-

tion in the crystal lattice (internal friction), capture, retention and release of introduced helium and 

hydrogen in vanadium-titanium alloys is nonmonotonic, as well as the effect of titanium on some 

physical, mechanical and high-temperature properties and radiation resistance of V-Ti alloys are 

known from literature. Analysis of experimental data obtained by different methods, leads to the con-
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clusion that perhaps such an influence occurs due to the interaction of atoms of vanadium and titanium 

with interstitial impurities, in particular redistribution of O, C and N atoms linkages between vanadi-

um and titanium atoms. 
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