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Abstract. This work demonstrates implementation of low energy electron energy loss 

technique (EELS) in scanning transmission electron microscopy (STEM) to investigate the 

changes of free electron density at room temperature in ultra-thin NbN films under composite 

ion beam irradiation up to the deses of ~3 d.p.a. for nitrogen atoms. It was found the constant 

value of the free electron density ~1.6·10
29

 m
-3

 in this dose range while the irradiated material 

was characterized by metal type of electrical conductivity.  

1.  Introduction 

Last years in the area of cryo-electronics based on superconducting materials comes to the forefront. 

Nowadays the superconductivity is widely used for radio-frequency electronic devices, high-speed 

digital switches, the highly sensitive radio receiving equipment. One of the main advantages of the 

superconductivity are low power consumption and high frequencies of operation. 

Niobium nitride has been widely studied because of the high transition temperature and critical 

current values [1-3]. The main aim of the well-known experiments of irradiation influence on NbN 

was to understand the nature of high resistance to radiation damage of this material under neutron 

irradiation [4]; and to study the effects of ion irradiation on its superconducting properties [5]. It have 

been shown that fast neutron irradiation of NbN films up to the fluence of 1.5*10
20

n/cm
2
 decreased the 

transition temperature by ~6% only [4]. This high resistance to radiation damage was attributed to the 

highly defective nature of the NbN films [4]. At the same time high energy ion irradiation of NbN 

films by 200 keV Ar
+
 [5] and 350 keV Ne

+
 [6] ions showed the larger transition temperature reduction 

due to the damage production. It was found [6] that the radiation-induced resistivity changes saturate 

at increases after damage value more than 1 d.p.a. per target atom. 

Nowadays niobium nitride is one of the most promising materials in the field of low-temperature 

superconducting electronics to build electronic devices such as bolometers (HEB), superconducting 

single-photon detectors (SSPD), quantum devices [7]. 

We are developing the radiation-induced transformation of the thin film niobium nitride to change 

the electrical properties under low energy ion beam irradiation [8]. We performed the composite ion 

beam irradiation [9, 10] to get metal type of electrical conductivity of ultra-thin (5nm) NbN films at 

4.2 K[11].  
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Ultra thin NbN superconductive films structure being modified under low energy ion beam 

irradiation needs to be characterized by the local technique that can provide high spatial resolution 

together with analytical signal to find out radiation-induced changes in the atomic content of the film. 

For this purpose, we used analytical STEM techniques on the cross-section samples of the films. 

The main task of the present work was to apply low energy loss electron spectroscopy to 

investigate the free electron density at room temperature changes under composite ion beam 

irradiation up to the doses of ~3 d.p.a. for nitrogen atoms. 

 

2. Experiment 

Ultrathin niobium nitride films with thickness of ~5 nm were deposited by sputtering niobium 

target by nitrogen ions on the oxidized (~0.15 m amorphous SiO2) monocrystalline silicon substrate 

heated to a temperature of about ~800
o
C [8]. Thus created NbN film characterized by a high 

superconducting transition temperature of about 12 K and a critical current density of ~510
6
 A/cm

2
 at 

4.2 K.  

Samples were irradiated by composite ion beams extracted from the high-frequency plasma 

discharge and consisting of OH ions and protons [9,10] with energies (0.1-1) keV in a dose range (1.6-

3) d.p.a. for nitrogen. The ratio of OH ions to hydrogen ones in the composite ion beam was monitored 

by measuring the partial pressures of the residual H2O component and hydrogen supplied [9,10]. In 

our case the beam composition was c = 1.2 10
-3

. The dose rate of nitrogen atoms displacement was 

performed using SRIM code [12] and in our case was ~0.02 d.p.a./s. 

Analytical Transmission Electron Microscopy investigations were performed in STEM mode to get 

highest spatial resolution together with the detecting of inelastic electron energy loss signal at “Titan 

80-300ST” electron microscope at an accelerating voltage of 200 kV. Cross section of the virgin and 

irradiated samples were made at the Focusing Ion Beam facility “Helios Nanolab 650”. 

STEM mode was very attractive to perform the chemical elements depth-distribution analysis at 

cross-section samples, because of the small size of electron probe (~0.14 nm) that the elements 

distribution profiling of the irradiated ultra-thin film was available. 

Electron Energy Loss Spectroscopy (EELS) was used to get analytical information from the thin 

sample area under electron probe focus. Together with the standard elements relative distribution 

technique [13] we used low energy loss plasmon peak analysis [14]. The energy of plasmon peak 

  was defined [14]: 

   
 

  
   

 

  
 
   

   
 ,                                                                       (1) 

where h – Plank’s constant;    – permittivity of free space;    – plasmon frequency;  – free electron 

density;   and   – electron charge and mass. Because of the strong influence of the ion irradiation on 

the electrical properties of the thin NbN film [11], it was important to find out the dependence of free 

electron density on the dose of composite ion beam irradiation.  

 

3.  Results and discussion 

Figure 1 shows the plasmon peak energy loss spectra for NbN virgin samples and for samples 

irradiated by composite ion beam up to doses 1.6 and 3 d.p.a. The intensities of spectra on Figure 1 

was normalized by the intensity of the last plasmon peak at ~45 eV. One can use the highest peak on 

Figure 1 (at ~24 eV, indicated by arrow) to calculate the materials free electron density.  

From the shape of the curve on Figure 1 it was obvious the presence of the small first peak at 

energies ~15 eV, that was lower than the energy of the main plasmon peak. This first peak fitting 

results indicated on Figure 1 by dotted line. Because the free electron excitations were attributed to the 

smallest value of electron energy loss, to our opinion, this first peak must be used to calculate the free 

electron density using equation (1). 
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Calculations of the value of the free electron density using the first peak at ~15 eV yielded a value 

of  1.6·10
29

 m
-3

, while using a main plasmon peak at ~24 eV yielded a value of 4·10
29

 m
-3

. The 

comparing of these densities with the literature data for NbN showed that the first value is closer to the 

literature one     2·10
29

 m
-3

 [15]. Arguments: 1) that the plasmon excitations correspond to 

minimum electron energy loss and 2) that the experimental free electron density, calculated from the 

first peak position, was close to the literature data were the basis for selecting this first peak as the 

main one in this work. 

 

 

 

 

 

 

 
 

Figure 1. Low energy electron loss 

spectra for virgin sample and after 

irradiation up to 1.6 and 3 d.p.a. 

Dotted line indicates the position of 

the first peak for virgin sample with 

lowest energy. Arrow shows the 

position of the maxima of the curve 

for virgin sample. 

Table 1 shows the experimental results of energy position of the first peak dose dependence. We 

can see the that up to doses of ~3 d.p.a. the energy position of the first peak did not change 

significantly and the error was attributed to the energy dispersion of the EELS spectrometer and 

accuracy of zero-loss peak position determination. The stable value of free electron density suited with 

the metal type of electrical conductivity for low dose (1.8-9 d.p.a.) irradiated samples [11]. 

During study of elements concentration evolution under composite ion beam irradiation was shown 

[16] that the functional conductive part of the film was transformed to the NbNO oxynitride at the 

range of doses ~(1-4) d.p.a., while the layer close to the irradiated surface of the sample became more 

oxidized due to the higher degree of nitrogen atoms substitution by oxygen atoms. In spite of this more 

oxidized upper layer did not take part in electrical transport of the film, we put to Table 1 the value of 

the first peak position to demonstrate its shift towards zero. This shift was corresponded to the 

decrease of free electron density on the way of superconductor-metal-insulator transformation under 

composite ion beam irradiation.  

 

Table 1. Experimental energy position if the first energy loss peak and 

corresponded free electron density for different doses. 

Dose, d.p.a. E1 (eV) ne, ·10
29

 (m
-3

) 

0 15.0±0.1 1.62±0.05 

1.6 15.1±0.1 1.64±0.05 

3 15.2±0.1 1.67±0.05 

Top oxidized layer  14.5±0.1 1.51±0.05 

 

In the future investigations we are going to use this low energy electron loss spectra analysis up to 

high doses of composite ion beam irradiation to characterize the transformation of niobium nitride to 

niobium oxide from the point of EELS technique in comparing with the electrical properties 

measurements.  
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4.  Conclusions 

By methods of low electron energy loss (EELS) in scanning transmission electron microscopy 

(STEM) were studied changes of the free electron concentration on the ultra-thin NbN films under 

composite ion beam irradiation to different doses. It was found the first peak in EELS spectra at the 

energy ~15 eV and corresponded free electron density ~1.6·10
29

 m
-3

 at room temperature. It was 

shown that composite ion beam irradiation up to dose of ~3 d.p.a. did not significantly change the free 

electron density of the functional layer. 
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