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Abstract. As one of the crucial components for power supply, the propulsion system is of great
significance to the advance speed, noise performances, stabilities and other associated critical
performances of underwater vehicles. Developing towards much higher advance speed, the
underwater vehicles make more critical demands on the performances of the propulsion system.
Basically, the increased advance speed requires the significantly raised rotation speed of the
propulsion system, which would result in the deteriorated cavitation performances and
consequently limit the thrust and efficiency of the whole system. Compared with the traditional
propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other
associated performances. The present research focuses on the cavitation performances of the
waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle
propulsion. Based on the specifications of a certain underwater vehicle, the design method of
the waterjet blade with high cavitation performances was investigated in terms of numerical
simulation.

Introduction

Developing towards much higher advance speed, the underwater vehicles make more critical demands
on the performances of the propulsion system. Basically for the traditional propeller system, the
increased advance speed requires the significantly raised rotation speed, which would result in the
deteriorated cavitation performances and consequently limit the thrust as well as the efficiency of
whole system. Instead of directly increasing the rotation speed, the alternative structures of the
propulsion system give more beneficial choices. Distinguished from the traditional propellers which
make use of the blade lift to drive, the waterjet pump takes advantages of the momentum difference
between the inflow and outflow of the pump to thrust vehicles forward. Hence, under the same design
specifications, the water jet pump appears with obviously reduced rotation speed as well as more
favourite cavitation and vibration performances.

While further increase the vehicle advance speed, the inherent superiorities in cavitation
performances of waterjet pump are also insufficient. Commonly, to relieve the cavitation problem, the
underwater vehicles would try to increase their diving depth as well as the substantial pressure during
high speed advancing. Plenty of researches have been done to improve the inherent cavitation
performances of the waterjet pump. Since the cavitation performances of rotor blade are highly
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associated with its pressure distribution, it is essential to make the pressure field optimized but with
the blade loading unchanged. The optimization of the inlet condition to raise the inflow static pressure
by adjusting the geometries of pump is also effective to avoid or delay the cavitation inception.
Thurston and Amsler [4] proposed that it is quite beneficial to narrow the scope between the
subcavitating and supercavitating status due to the high instabilities here, and they have made a
detailed presentation about the cavitation control methods by adjusting the duct geometries as well as
optimizing the inflow static pressure in the waterjet pump. Additionally, the local vortices, the abrupt
flow acceleration and other types of flow structures which result in sharp static pressure drop and
associated losses also contribute to the cavitation problem significantly. The axial and mixed flow
pumps are usually characterized by the tip leakage flows, which are always accompanied with sharp
pressure drop as well as cavitation inception inside the vortex cores. Wu et al. [5] simulated the flow
vortices structure in the waterjet pump, and carried out the researches on the mechanism and the
cavitation inception in the tip leakage vortex. Generally, the loading situation along the span and at the
blade tip region must be carefully considered to improve the pump cavitation performances while
keeping the work capacities there.

In the present paper, the cavitation performances of the waterjet pump blade profile in high-speed
vehicle propulsion are concentrated. Refer to the pump performances under high-speed advance, the
blade geometries and associated loading situations were studied to improve the pressure distributions
as well as the cavitation performances. Based on the specifications of a certain underwater vehicle, the
waterjet blade design method with the consideration of cavitation performances was investigated in
terms of numerical simulation.

Key Parameters and Performance Simulation Method of the Waterjet pump

In the present paper, all of the model waterjet pumps were designed and studied based on a certain
underwater vehicle with the specifications described in table 1, which could be simplified as an
axisymmetric cylindrical body.

Table 1. Major performances specifications of the underwater vehicle

Advance speed [Kn] Diameter [m] Length [m]  Thrust [KN]

50 0.324 6 5

Refers to the distribution properties of the wake flow at the vehicle trail [6,7], the inflow profile of
the waterjet pump described as equation (1) was specified to simulate the inlet velocity. Herein the
axial velocity at the pump inlet V, [m/s] was assumed to vary linearly against the pump inlet radius D,
and the circumferential and radial components are assumed to be negligible.

Vin =73.4D +7 M)

To offer sufficient power supply to the vehicle while keep the effect to its hydrodynamics
properties minimized, the dimension and mechanical structure of propeller must be carefully
determined [6]. Since the present paper concentrate on the internal performances of waterjet as the
propulsion device, the specifications of the waterjet pump were majorly decided based on the vehicle
required thrust and the pump models in other related researches [5,7]. As listed in Table 2, the rotor
outer diameter was specified as 67% of that of vehicle, which was supposed to keep the hydrodynamic
influence on a relatively low level.

Table 2. Major specifications of the model waterjet pumps

Head rise [m] 20 Blade tip clearance [mm] 0.5
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Rotation speed [min] 3000 Inlet area [m?] 0.0278
Flow rate [m®/s] 0.5477 Outlet area [m?] 0.0196
Thrust [KN] 5 Rotor hub diameter [m] 0.22
Power [KW] 138 Rotor tip diameter [m] 0.116
Rotor blade number 7 Inflow axial velocity [m/s] 19.70
Stator blade number 11 Outflow axial velocity [m/s]  27.94

In the present study, all of the simulation works were conducted with the commercial
Computational Fluid Dynamics (CFD) code ANSYS CFX, and the modelling and computational grid
generations were done by ANSY'S Turbogrid. The entire annuluses model is illustrated in figure 1 to
better visualize the waterjet pump concept. For the preliminary evaluation of the waterjet pump
internal and external performances, only the steady-state computations with one rotor-stator passage
were carried out. As the most prominent two-equation models proficient in the flow separation
predictions, the k- based SST (Shear Stress Transfer) Model was employed in all of our simulation
works.
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(a) Entire annuluses model with (b) Entire annuluses model without
pump casing pump casing

Figure 1. Computational model of waterjet pump

Blade Loading Distribution Design Method Based on Cavitation Performances
To evaluate the cavitation performances quantitatively, the definition of Required Net Positive Suction
Head (NPSHr) is given in equation (1), in which V. and W are specified as the absolute and the
relative velocities at the blade leading edge point ‘L’, and 11 and A, as the loss coefficients decided by
the inlet condition and the blade profile respectively.
C 2 W, 2
NPSH, = A, i + 2, ﬁ )

In the traditional axial flow pump designed with the loading profile of ‘free vortex’, the cavitation
inception is ordinarily found at the leading edge around the tip profile due to the low static pressure as
well as the rather high peripheral speed and relative velocity there.

Regardless of the inlet condition, the cavitation performances of rotor blade are highly associated
with its pressure distribution, it is essential to make the pressure field optimized but with the blade
loading unchanged. Generally, the aerofoil with heavy loading is usually fore-loaded with lowest
pressure point and sharp pressure gradient at the Leading Edge (LE) on the Suction Surface (SS),
which could offer high work capacity but quite unfavourable to the cavitation performances. In the
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present paper, the blade loading situation with the compromise between hydraulic and cavitation
performances was studied. Based on the related research results [8-10], the most decisive parameters
for the blade loading situation could be concluded as: 1) camber line function, 2) max camber height
location x¢/1, 3) incidence angle i.

1.1.  Camber line function

In the present study, the quadratic parabola equation (2) was applied to specify the camber geometry,
in which a, b, and c respectively denote any arbitrary constants, the chord ratio x ranges from 0 to 1,
and 6 represents the local gradient angle of the camber curve (as shown in figure 2) with the condition
of tan 6 = dy/dx.

O(x)=ax?+bx+c (3)
v Thickness  Suction Surface
Camber line
» ) .
6=p—r \—" ¥ VAN \&:'ﬁﬁﬁ
Pressure Surface/ \_Chord

Figure 2. Schematic camber line geometry

1.2.  Other factors related to camber geometry
Moreover, the max camber height location x¢/l and the incidence angle i are among the important
decisive factors to the blade loading and pressure distribution along the PS and SS, consequently
influential to the cavitation performances. The large work capacity is usually accompanied with large
attack o and incidence angle ¢, and the location of x /I close to the LE, which ordinarily results in the
fore-loading situation. In that case, the SS is characterized by a region with rather low pressure to offer
considerable pressure difference as well as large lift force, in which the cavitation inception usually
occurs. In the related researches [8, 9], Zangeneh, M. et al. proposed the optimum pressure distribution
model for the impellers in terms of secondary flow suppression, and indicated that it is beneficial to
respectively increase the blade aft part loading at the hub section and decrease that at the tip area.
Generally, the blade pressure distribution should be optimized with the min pressure raised for the
cavitation consideration but the blade loading maintained for the hydraulic performance consideration.
The combination of x¢ /1, i and other parameters should be carefully specified to get more flat blade
loading curve at the SS. In the present research, the several combinations were evaluated for the blade
loading situation, hydraulic performances and cavitation performances.

8 =mc(Bp1 — Bpz)o ¢ (4)

§=20p+13.05(L-04) (5)

The design specifications of three of these models are given in table 3. For the first two models G1,
the classic deviation angle model of equation (4) was adopted, where m.=0.26, n.=0.5 as in the axial
flow compressors and o represents the cascade solidity; while for the G2 and G3, to improve the work
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capacity as well as the flow turning under the aft-loading situation, an alternative empirical formula
equation (5) was applied, which has been validated in the previous researches [11].

Table 3. Design specifications of three of rotor models

Section 1(Hub) 2 3 4 5(Tip)
Incidence [] 2.00 1.00 1.00 1.00 0.00
Xill 0.40 0.40 0.40 0.40 0.40
ot Deviation angle [] 3.60 3.71 2.54 2.10 1.96
Attack angle [] 10.824 7.996 5.368 3.804 2.856
Incidence [ 2.00 1.00 1.00 1.00 0.00
Xill 0.40 0.45 0.50 0.55 0.60
©2 Deviation angle [] 5.00 5.15 4,91 4,95 6.03
Attack angle [9 11.898 6.424 3.622 2.079 0.429
Loading coefficient L. 0.915 1.007 1.060 1.115 1.129
Incidence [] 2.00 1.00 1.00 1.00 0.00
G3 | xil 0.500 0.525 0.550 0.575 0.600
Deviation angle [] 10 7.10 6.09 5.54 6.03
Attack angle [] 7.158 4114 2.502 1.559 0.429
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Figure 3. Schematic camber line geometry

The third model type G3 was designed based on the simulation results of the first two models.
From figure 3(a), it can be seen that expect for the defect due to the tip leakage flow, the distributions
of outflow swirl Vy of G1 and G2 rotors are deviated from the design expectation denoted in green.
Compared to the G1 blade designed with x¢ /1 close to LE (40% of chord length) along the whole span,
the G2 rotor shows the more pronounced defect of Vg with x;/1 moving backward (from 40% at hub
to 60% at tip), which indicates the insufficient work capacity of the G2 profile section under the aft-
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loading situation. To obtain the flow turning as well as the hydraulic head satisfying the design
specification, the loading coefficient L. was introduced to calibrate the distribution of design head
along the blade span. In equation (6), subscript d denotes under design condition, and G2 denotes the
simulation results of G2 rotor.

Le =Vo,4/Vo G2 (6)

Combining the calibration methods above, the G3 rotor was obtained as described in table 3. It is
clear that compared with those profiles designed with equal x;/l, G3 showed obviously increased
attack angles as well as improved work capacity. In this case, the G3 blade profile was supposed to
reach a compromise between the cavitation performances and hydraulic performances.

The thickness evolution law of NACA 4* series [12] as expressed by Eqg. (3-16) was adopted,

M oy Fratva () ve () +al)) ”

where y;(x)/l represents the relative thickness at any arbitrary position of x/I, and ay,~a, are
given by the NACA4* profile data. With the calculated thickness perpendicularly growing to both
sides at the corresponding camber point, the outlines of the pressure and suction surfaces are generated
as shown in figure 2.

Hydraulic and Cavitation Performances of Rotor Models

With the steady CFD simulation methods mentioned in Section 2, the preliminary performances of
three types of rotors at the design flow rate Q = 0.5477 [m?/s] as presented in table 4. The properties of
cavitation inception of these rotors were studied with the parameter of NPSH, (Required Net Positive
Suction Head), which was calculated under their respective design conditions by the following
equation (8),

NPSH, = M (8)
P9
where P, ; represents the total pressure at the rotor inlet, and P,,;,, the minimum pressure obtained
around the blades of each rotor. And the positions with rather low pressure caused by the local vortices
and losses were ignored in the evaluation of NPSH,, such as the PS-tip corner where the great pressure
drop is induced by the tip leakage flow.

Table 4. External Performances of Three Types of Rotors

H [m] n T [KN] NPSHr [m]
Gl 18.714 90.43% 4.05 37.88
G2 20.080 92.54% 4.27 37.89
G3 20.304 91.70% 4.5 20.74

From the simulation results represented in table 4, it can be seen that even the profile of G1 rotor
was designed as fore-loaded, it can hardly meet the design specification due to the insufficient
deviation angles at the blade trail. With the deviation angles renewed, the latter two rotors G2 and G3
show well improved head rises, which are highly close to the design specifications H = 20 [m].
Compared with the G2 rotor, the G3 rotor with max camber height location moved backward
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represents the well increased P.i» but can still offer comparable work capacity, which indicates that the
G3 blade has the more flat loading curve and do work on the fluid more evenly from LE to TE.
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(d) Loading curves of G2 rotor blade (b) Loading curves of G3 rotor blade

Figure 4. Loading curves of G2 and G3 rotor blades

The loading curves of the G2 and G3 rotor blades at various span locations are given in figure 4,
from which the above assumption could be validated. In the area near to hub, the G2 blade shows
rather steep pressure growing gradient on SS with a region of lowest pressure at LE as shown in figure
4 (a), which implies that the loading of these sections is concentrated at LE. This region usually
corresponds to the location where cavitation inception occurs. With the max camber height location
moving backward and the calibration of the head distribution in spanwise, the G3 blade shows the aft-
loading situation and relatively flat pressure growing curves on SS through the whole span. Hence, the
G3 rotor was believed to have well delayed cavitation inception compared with the G2 rotor under the
equal ambient pressure.
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Figure 5. Drop curves of G2 and G3 rotor blades

The drop curves of two rotors are presented in figure 5, which were calculated in steady
simulations with cavitation model of Rayleigh Plesset. It can be seen that the G3 rotor blade appears
with superior cavitation performances compared to the G2 rotor blade.
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Figure 6. Cavitation visualization of G2 and G3 rotor blades with vapour volume fraction as 10%

In figure 6, the cavitation range under various ambient pressure is presented with the vapour
volume fraction of 10% as shown in grey. Regardless of the cavitation occurred in tip leakage flow,
due to the different consideration in the design of blade loading, the two rotors differ from each other
obviously in the locations of cavitation inception. As shown in figure 5, the G2 rotor was found to
have cavitation at LE of the hub section, where the blade loading was designed to be rather large. The
G3 rotor with the relatively flat pressure distribution curve at SS shows cavitation inception in the mid
part of blade, and with the blade loading distribution optimized the NPSHa at the cavitation inception
moment (NPSH, 3 = 20 [m]) is found to be well reduced from that in G2 rotor (NPSH. g2 = 25.64 [m]),
indicating the much lower possibility of cavitation under same working condition.

With the ambient pressure further reduced, both two rotors suffer from the hydraulic deterioration
as the steep drop of head rise and efficiency. In this paper, the 3% head drop point was determined as
the critical cavitation point. As shown in figure 6 (c) and (d), the suction surfaces of both rotor blades
are covered with a massive of vapour cloud, and the blade loading is significantly decreased. Even in
this case, the G3 rotor blade still shows relatively superior ability to maintain the head rise at a high
level, while the G2 rotor suffers from rather early head rise reduction as shown in figure 5.

Conclusion

In the present paper, the cavitation performances of the waterjet pump blade profile in high-speed

vehicle propulsion are concentrated. Refer to the pump performances under high-speed advance, the

blade geometries and associated loading situations were studied to improve the pressure distributions

as well as the cavitation performances.

1) With the loading point moving backward, the flow turning in the blade passages as well as the
work capacity of the blades are obviously weakened, and the deviation angles should be increased
to maintain the hydraulic performances of the rotor.
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2) The appropriate combination of the design incidence, camber geometry and loading distribution in
spanwise could obtain the optimized rotor cavitation performances while maintaining the work
capacity, efficiency and other hydraulic performances.

3) With the blade loading optimization in the design stage, the G3 rotor blade appears with superior
cavitation performances compared to the G2 rotor blade. And in the severe cavitation situation,
the G3 rotor blade still shows relatively superior ability to maintain the head rise at a high level.
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