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Abstract. Identification problems for a linear stationary reaction–diffusion–convection model, 

considered in the bounded domain under Dirichlet boundary condition, are studied. Using an 

optimization method these problems are reduced to respective control problems. The reaction 

coefficient and the volume density of substance source play the role of controls in this control 

problem. The solvability of the direct and control problems is proved, the optimality system, 

which describes the necessary optimality conditions, is derived and the numerical algorithm is 

developed. 

1. Introduction. Statement and solvability of the boundary value problem

Much attention has been given in recent years to the formulation and study of new classes of problems 

for heat and mass transfer models. The control problems are examples of such problems. There is a 

number of books [1–3] and papers [4–12] devoted to the theoretical studies of the control problems for 

models of heat and mass transfer. 

Along with control problems, an important role in applications is played by identification problems 

for heat and mass transfer models. The unknown densities of boundary or distributed sources or the 

coefficients, involved in the differential equations or the boundary conditions for the heat and mass 

transfer models under study, are recovered in these problems using the additional information 

concerning the solution of the original boundary value problem. It is important that the identification 

problems can be reduced to corresponding extremum problems using a certain choice of the 

minimized cost functional. Based on this approach, there arise inverse extremum problems. They can 

be studied using well-known constrained minimization methods. The application of this approach to 

heat and mass transfer models was described in [13–17]. The papers [18–22], where an analogous 

approach was used for solving similar inverse problems arising in the study of thermal processes 

occurring in the Earth’s mantle and in technical gas dynamics, should be also mentioned.  

In this paper we consider the following boundary value problem for the stationary reaction–

diffusion–convection equation: 

.,in)(div  


CfkCCuC    (1) 
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Here   is a bounded domain in
dR , 3.2d  with boundary  , )(xC  is the substance

concentration, 0)(  x  is the diffusion coefficient, )(xuu   is the fluid velocity, function 

)(xkk   is the reaction coefficient, function f  describes the density of volume sources. 

Below we shall use Sobolev function spaces RsDH s ),( . Here, D  denotes  , its boundary 

 , or certain subdomain Q . By  ,|||| s ,  ,|| s , and  ,),( s , we denote the respective norm,

seminorm, and scalar product in )(sH . Expressions Q||||  , Q,1||||  , Q),(   and Q,1),(   denote the 

norms and scalar products in )(2 QL  and )(1 QH , respectively. If Q  we omit index  , setting 

||||||||   , 1,1 ||||||||   , and ),(),(   . Let }.0|:)({ 1   HX  The duality relation 

between X  and its dual 
*X  is denoted by , . Let us define }0div:)({ 31  uHuZ , 

0:)({)( 22  kLkL in } , 0:)({)(
0

   LL in } , where 0const 0  . We 

can recall that by Poincare' inequality [3] the following relation holds: 

XCCC 


2

,1

2

,1


where  const 0 . 

Let us suppose that the following conditions take place: 

(i) ,1,0C ),(
0
 

 L 0 const ,0 ;Zu

(ii) ),(2  Lk  )(2 Lf . 

We will begin with a brief study of unique solvability of the boundary value problem (1). Let us 

multiply the equation in (1) by test function ,X  integrate over  and apply Green’s formula. 

Proceeding as in [17], we obtain 

),(),(),(),(),(  fkCCuCCak     .X  (2) 

Here we use notation 

  dxCC  ),( ,   dxCuCu  )(),( ,  dxkCkC ),( . 

We shall call solution )(1 HC  of the problem (2) a weak solution of the problem (1). 

A simple analysis shows that bilinear form ),( ka which is defined in (2) is continuous and 

coercive on X  and the following inequality takes place: 
2

,10),(


 CCCak  .XC  

Based on this fact and using the Lax-Milgram theorem one can prove the following theorem 

concerning the existence of the unique weak solution of the problem (2).  

Theorem 1. Let the conditions (i) take place. Then the following assertions hold: 

1) The bilinear form RXXa :  given in the left hand of (2) is continuous and coercive on 

X  with coercitivity constant 00*   .

2) For any pair ),( fk , satisfying conditions (ii), the problem (2) has a unique solution XC

and this solution satisfies the estimate 

.|||||||| 1

0,1 



 fC   (3) 
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2. Statement and solvability of control problem. Optimality system

We recall that the boundary value problem (1) contains four variable parameters: diffusion  , 

velocity u , reaction coefficient k  and source density f . All these functions must be provided for the 

solution of the problem (1.1) in order to be unique. However there appear situations in practice when 

some of mentioned functions are unknown and one has to determine them using the additional 

information about the solution. For example one can use values )(xCd  of concentration C  measured 

in points of some set Q . 

Get us consider the situation when reaction coefficient k  and density f  are unknown, and one 

should determine them together with solution C  of (1). This identification problem is studied by 

applying an optimization method [3]. According to this method the problem is reduced to a 

corresponding inverse extremum problem (see details in [15-17]). Following this method, we divide 

the set of input data in the problem (1) into two groups. One consists of fixed data, namely, invariable 

functions  and u . The other group consists of two distributed controls, namely, functions k  and f . 

Assume that controls k  and f  change over sets 1K  and 2K  satisfying the following conditions: 

(j) ,1 ZK  )(2

2  LK  are nonempty convex closed subsets. 

Let us denote ,21 KKK  ),( fku   and define operator 
*XKXF   acting by 

).,(),(),,(  fCauCF k 

Let RXI :  be arbitrary weak lower semicontinuous cost functional. We consider the following 

constrained minimization problem: 

inf,||||)2/(||||)2/()()2/( 2

2

2

10   fkCI   ,0),( uCF

.),,(),( KXfkCuC   (4) 

As the admissible cost is functional we choose one of the following: 

,||||||)( 22

1 dxCCCCCI
Q

dQd      
2

,12 ||||)( QdCCCI  . 

Here )(2 QLCd   (or ))(1 QHCd   is a given function in Q . We assume in addition to (j) that the 

following conditions hold: 

(jj) 00  , 01  , 02   and 21 , KK  are bounded sets or ,01  .02   

The following theorem can be proved. 

Theorem 2. Under assumptions (i), (j) and (jj) the control problem (4) for 2,1,  mII m  has at 

least one solution )€,€,€()€,€( fkCuC  , which is an element of 21 KKX  . 

3. The optimality system. Numerical algorithm

The following stage of studying the control problem is the derivation of the optimality system for the 

problem (4). The Lagrange principle for extremum problems (see [3, p. 341]) is used for this purpose. 

Using this principle and techniques of [3,17] we can prove the following theorem. 

Theorem 3. Let us suppose that, under conditions of Theorem 2, triple 21)€,€,€( KKXfuC   is

a solution of the problem (4) and let )(CI  continuously be a Frechét differentiable functional with 

respect to C  at point C€ . Then there is unique non-zero Lagrange multiplyer X , so that the

Euler–Lagrange equation  
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0)€()2/()€,€( '

0

*'  CIuCF CC 

holds in 
*X  which is equivalent to the identity 

 ),€()2/(),(),€(),( '

0 CIku C  X (5) 

and the minimum principle holds which is equivalent to the pair of variational inequalities 

0),)€(()€,€(1   Ckkkkk  ,1Ku  (6) 

0),€()€,€(2   fffff  .2Kf   (7) 

The direct problem (2), the adjoint problem (5) together with the variational inequalities (6), (7) 

form the optimality system that describes the necessary optimality conditions. The optimality system 

plays an important role when studying control problems. Based on the analysis of the optimality 

system one can apply fundamental properties of solutions to the control problem (see in more details 

in [13,15,17]). Besides, on the base of the optimality system, the efficient numerical algorithm can be 

developed for solving the control problem (4). If, in particular, to apply the simple iteration method to 

the optimality system (2) (5), (6), (7) then one can derive the following iteration algorithm: 

),(),(),(),(),( hfhCkhCuhChCa nnnnnn

k      ,Xh  (8) 

 ),()2/(),(),(),( 0

n

T

nnnn TICku   X , (9) 

1

11

1 0),)((),( KkCkkkkk nnnnn    , (10) 

2

1

2 0),(),( Kffffff nnnn   . (11) 

The proposed algorithm consists of finding 
1nk  and 

1nf  for given 
nk  and 

nf  by sequentially 

solving problems (8), (9), (10) and (11). The separate paper of the authors will be devoted to study of 

the properties of the corresponding algorithm and the analysis of the results of computational 

experiments on the base of this algorithm.  
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