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Abstract. Algorithms based on using the agglomerative greedy heuristics 

demonstrate precise and stable results for clustering problems based on k-

means and p-median models. Such algorithms are successfully implemented in 

the processes of production of specialized EEE components for using in space 

systems which include testing each EEE device and detection of homogeneous 

production batches of the EEE components based on results of the tests using 

p-median models. In this paper, authors propose a new version of the genetic 

algorithm with the greedy agglomerative heuristic which allows solving series 

of problems. Such algorithm is useful for solving the k-means and p-median 

clustering problems when the number of clusters is unknown. Computational 

experiments on real data show that the preciseness of the result decreases 

insignificantly in comparison with the initial genetic algorithm for solving a 

single problem.  

 

 

Introduction 
Supplying the electronic units of the complex technical systems with the highest quality 

EEE components increases the  whole  system reliability.  Moreover, for reaching  the  

highest reliability of an electronic unit,  the  EEE components  of  the  same  type  must  have  

equal  characteristics  which  assure  their  coherent operation.  The  highest  homogeneity  of  

the  characteristics  is  reached  if  the  EEE  components are  produced  as  a  single  

production  batch  from  a  single  batch  of  the  raw  materials [1].  The critically  important  

units  are  integrated  from EEE  components  manufactured  as  a  special production lots 

with special quality requirements [2, 3]. 

The characteristics of each EEE device in the lot are checked using destructive and 

nondestructive tests  [2, 4]. Resulting data of such tests are used for analyzing the lot 

homogeneity [4]. For splitting the EEE components into several assumed production batches, 

the k-means method is used [5, 6, 7]. 

                                                           
*
 Results were obtained in the framework of the state task № 346 of the Ministry of Education and Science of the 

Russian Federation 
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Manufacturers of the EEE components in the United States of America and European 

Union produce components of special quality classes, Military  and Space [8, 9]. 

Manufacturers in the Russian Federation do not form a special class of components for use in 

space systems [2, 3]. 

The k-means problem can be classified as a continuous problem of the location theory [10, 

11, 12]. The aim is to find k points (centers, centroids) in a d-dimensional space such that the 

total squared distance from each of the data vectors (known points, measurement result 

vectors) to the nearest of k chosen centers reaches its minimum: 

                    ∑   
      

       
‖     ‖

 
          

The aim of a continuous p-median problem (also known as k-median problem) [11] is 

finding   points (called centers or medians) such that the sum of weighted distances from  N 

known points (data vectors) to the nearest of k centers reach its minimum. 

                    ∑   
        

       
                  

Here, wi are the weight coefficients, L() is some distance function between two given 

poins. Usually, L() is a metric in the d-dimensional space. 

Continuous location problems with Euclidean, Manhattan (rectilinear), Tschebychev 

metrics a well investigated (all such metrics are special cases of metric based on Minkovski 

lp-norms [13]), many authors propose algorithms for solving p-median problems with such 

metrics and their special case, 1-median problem (also called the Weber problem) which is 

used for solving the p-median problem. In particular, well known Weiszfeld procedure [44] 

was generalized for metrics based on Minkovski norms.  

Traditionally, the problem with the Euclidean metric     


2
1 i,kj,k

d
kij ax=,AXL  is 

called p-median problem. Here,  j,kj,j ,...,xx=X 1  ,pj=1 ,  i,ki,i ,...,aa=A 1  ,Ni=1 . In 

case of the squared Euclidean metric     


2
1 i,kj,k

d

kij ax=,AXL  and weight coefficients 

,Ni==wi 11 , we have the k-means problem. 

 

Known methods 

The k-means method uses the ALA procedure (Alternating  Location-Allocation)  which 

includes two simple steps:  

 

Algorithm 1. ALA procedure.  

Required: data vectors A1...AN, k initial cluster centers X1...Xk. 

1. For each center Xi, determine its cluster Ci  as a subset of the data vectors for which this 

center Xi is the closest one.  

2. For each cluster Ci, recalculate its center  Xi (i.e., solve the Weber problem). 

3. Repeat Step 1 unless Steps 1, 2 made no change in any cluster. 

 

Except special  cases, the k-means and p-median problems are NP-hard and require global 

search [15].   

The result of the ALA procedure depends on the choice of initial cluster centers. Known k-

means++ algorithm [16] has an advantage in comparison with the random choice of the initial 
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centers with uniform distribution. However, this improvement preciseness is  insufficient for 

many practically important  problems which need more precise results. For  such  cases, 

researchers propose various recombination techniques for initial center sets [10].  

The ALA procedure can be optimized with use of many techniques. For example, sampling 

procedures [17] solve the k-means problem for the randomly selected subset of the data 

vectors and use the achieved result as an initial set of centers for solving the original problem.  

The dependence of the results  of  the  ALA  procedure  on  the  initial  centers  seeding  is  

a serious  problem  for  the  reproducibility  of  the  classification  algorithm  results:  

depending  on the initial centers seeding, different algorithm starts classify the same data 

vectors as elements of  various  clusters.  For  the  EEE  component  production  batches  

classification  problem,  this means  that  various  EEE  component  belong  to  the  same  or  

different  production  batches depending  on  the  initial  seeding.  Thus,  an  algorithm  for  

solving  k-means  problem  which returns a stable result is preferred.  

Rather precise but extremely slow, the Information Bottleneck Clustering method (IBC) is 

a deterministic method for solving the  cluster  analysis  and  classification  problems  able  to  

achieve  perfect  results  in  many cases.[18]. This algorithm starts from considering each data 

vector as a separate cluster. Then, clusters  are  removed  one-by-one  until  the  desired  

clusters  quantity  remains.  Each time,  the algorithm  eliminates  such  cluster  that its  

elimination  gives  the  smallest  increment  of  the objective function value. For the k-means 

and p-median problems, this algorithm eliminates the cluster center which  gives  the  smallest  

total  distance  from  data  vectors  to  the  closest  remaining  centers.  

The genetic algorithms (GAs) with greedy agglomerative heuristic initially designed for 

the discrete k-median problem on a network [19] are compromise variants by preciseness, 

stability of the results  and time consumption. In [20, 12], author propose an approach for 

adaptation of these algorithms for the continuous location problems:  

 

Algorithm 2. GA with greedy heuristic and floating point alphabet. 

Required: Set                  , quantity of clusters  , GA population size   . 

1: Create    sets of coordinates           
:      ,               whica are 

results of the ALA procedure. Thus, each  
 
 is a local minimum of the solved problem. Store 

the values of the objective functions to an array of variables           
. 

2: If the stop conditions are reached then go to Step 8. 

3: Randomly choose two “parent” sets    
 and    

,             ,      . Running 

algorithm 3, obtain the "child" sets of coordinates    which are local minimums of the 

objective function. Store the value of the objective function   . 

4: If                 then go to Step 2. 

5: Choose an index                    
  . If           then go to 2. 

6: Randomly choose two indexes    and   ,      ; array                         . 

7: Swap the values of        
 and   , store        

    and go to Step 2. 

8: STOP. Result is set   
 ,                

  . 

 

Modification of the greedy agglomerative heuristic procedure for this GA is as follows. 

 

Algorithm 3. Greedy crossingover heuristic for Algorithm 2.  
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Required: Set                 , quantity of clusters  , two "parent" sets of centers 

   
 and    

, values    and     . 

1: Join sets       
    

. Run the ALA procedure for      clusters starting from the 

solution   . Store its result in   . 

2: If       , then run the ALA procedure with the initial solution    , then STOP and 

return result   . 

 2.1: Calculate the distances from each data vector to the nearest element of   .  

       
    

               

For each data vector, determine the closest center from   .  

          
    

               

Calculate distances from each data vector to the second nearest element (center) in   .  

       
           

         

3: For each     , calculate              ∑        
       . 

4.1: Calculate   . 

       [                 
Sort values of    and choose a subset                   

     from    of coordinates 

corresponding to minimum values of    . 

4.2: For each              , if                          then remove    from 

     . 

 4.3: Store            . 

 4.4: Reallocate data vectors between closest centers.  

   
        

    

               

4.5. For each     , if    {   }                then recalculate center    

кластера   
            

          . Set          
       . 

 5: Go to Step 2. 

 

Experimentally, authors [12] determine optimal values of parameters   =0.25 and      
   
    

                        

 

New algorithm 

Most algorithms such as ALA procedure or rather efficient genetic algorithm with 

recombination of fixed length center sets [21] require given value of the clusters quantity p. 

Other algorithms such as X-means [22] choose the best value of clusters number p with use of 

a special criterion. The adequacy of such criteria is a separate complex problem. Below, we 

propose a simple modification of the greedy heuristic: after reaching the quantity of clusters 

p, the process of elimination of the centers from the interim solution does not stop  and 

algorithm fixes the values of the objective function for each value of centers quantity. Thus, 

we can obtain solutions for series of problems with .p,p max2 . However, the maximum 

value of clusters quantity pmax must be given.  

The algorithm below is a combination of such greedy agglomerative heuristic with the 

genetic algorithm. However, such heuristic can be used with other global search strategies 

[23]  
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Algorithm 4. GA with greedy heuristic for solving series of problems with .p,p max2  

1. Initialization of a population of  Npop individuals. Each individual is a set of  pmax centers 

(we denote it   and     is the ith element of this set). Set Fnew,j= +∞ for each .N,j pop1

Initialize the arrays of the objective function values F
*

k = +∞ and best folutions X
*

k={} for 

each .p,k max2  

2. Select randomly       [    ,       

3.              

4. While            : 

4.1. Select an element j such that its elimination results in minimum increase of the 

objective function:               
            

4.2.              . Continue iterations 4. 

5. Set        ; X
*
=Xnew. 

6. While         :  

6.1. Set                  ; k=|    | ; Fk=        ; if Fk< F
*

k then set F
*

k = Fk; 

6.2. Perform Steps 4.1 and 4.2 for     . Continue iterations 6. 

7. Choose    using tournament selection by value of Fnew,j. Set          ;       , 

            . 

8. Check the stop conditions, go to 2. 

 

 

Computational experiments 

Computational results are shown in Table 1. For the continuous p-median problems, 

comparatively precise results are achieved when the quantity of clusters is large. Having 

decreased this quantity p, we obtain comparatively worse results. Thus, new algorithm is 

efficient for :        ⌈      ⌉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  After reaching the minimum number of clusters ⌈      ⌉,  
the algorithm must be restarted for obtaining results with less number of clusters. 

For the EEE components classification problems, it is usually enough to solve the 

problems with p{2..10}. Such problems can be successfully solved by a single run of the 

new algorithm.  

 

 

Conclusion 

New genetic algorithm can be efficiently used for solving k-means and p-median problems 

which arise during the process of EEE components classification by homogeneous production 

batches. Computational experiments demonstrate the preciseness of the new algorithm and 

stability of its results (minimum standard deviation) which is very important for technical 

problems with high price of an error. 
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Table 1. Computational results for the p-median and k-means problems 
Data set and its 

parameters  
p and 

distance 
metric 

Algorithm (see 
comments) 

Time, 
sec.. 

Average result Std. deviation  

Test results of 
the electronic 
chip 1526TL1,  

p=14,  
l2

2
 

 

ALA multistart 
Sheng, Liu+ALA 
New algorithm 

15 
15 

15 (for all 
problems) 

150,124869801 
149,954679652 
149,78736565* 

0,384203928 
0,172789313 
0,03157532* 

N=1234, d=120 
(in case of new 
algorithm,  

p=10, 
l2

2 

 

ALA multistart 
Sheng, Liu+ALA 
New algorithm 

15 
15 

15 (for all 
problems) 

198,375350991 
198,377650812 
198,35974703* 

0,018643710 
0,024878118 

2·10
-14

*
 

p{2..20} ) p=6, 
l2

2
 

ALA multistart 
Sheng, Liu+ALA 
New algorithm 

15 
15 

15 (for all 
problems) 

362,70701636* 
362,70401636* 
362,704051312 

0* 
0* 
0*

 

UCI Mopsi 
Joensuu, 
N=6014, d=2,. 

p=10, 
l2 

ALA multistart 
Sheng, Liu+ALA 
New algorithm 

15 
15 

15 (for all 
problems) 

359,680203232 
359,545250068 
359,41046080* 

3,964320582 
2,526439494 

0,177992934*
 

(in case of new 
algorithm , 

p{2..20} ) 

p=4, 
l2 

ALA multistart 
Sheng, Liu+ALA 
New algorithm 

15 
15 

15 (for all 
problems) 

596,825210394 
596,82520843* 
596,825283111 

0,000000442 
0,000000388 

0*
 

BIRCH-3, 
N=100000, d=2,  

p=100, 
l2

2
 

ALA multistart 
New algorithm 

30 
30 (for all 
problems) 

3,7513245·10
13 

3,740432·10
13

*
 

116786778766 
21699776156* 

(in case of new 
algorithm,  

p=50, l2
2
 ALA multistart 

New algorithm 
30 

30 (for all 
problems) 

9,0099578·10
13

 
8,902789·10

13
*

 
9545892119 

0* 

p{2..110} ) p=20, l2
2
 ALA multistart 

New algorithm 
30 

30 (for all 
problems) 

3,303278·10
14

* 
3,3049972·10

14 
0* 
0* 

Comments:” ALA multistart”  means multiple starts of the ALA procedure with random 
initial seeding, “Sheng,Liu+ALA” means running genetic algorithm with recombination of 
the fixed length subsets powered by the ALA local search [21], “New algorithm” means 
Algorithm 4. The best results are marked by “*”. 
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