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Abstract. The multicriteria mathematical model of foundry production ca-

pacity planning is suggested in the paper. The model is produced in terms 

of pseudo-Boolean optimization theory. Different search optimization 

methods were used to solve the obtained problem. 

 

1 . Introduction 

1.1. Production Capacity Optimization 

One of the actual problems in modern industry is production capacity optimization under 

irregular orders from numerous partners. Along with mass serial production this orders may 

have small serial or single nature. The most orders are irregular, i.e. they cannot be planned 

beforehand but nevertheless they are enough profitable for the enterprise. It requires solving 

production scheduling problems many times in casual points of time.  

So it is necessary to have means for including new small orders in capacity intervals of ex-

isting mass serial ones. Moreover, it is necessary to consider time of equipment revamping for 

small serial order since it take significantly more part of execution time then in mass serial 

production. 

Existing of small serial and single orders requires practically permanent process of produc-

tion capacity planning. Construction of production capacity program for industrial enterprise 

and its subdivisions is laborious and logically intricate problem. Consider it by the example of 

foundry practice. 

Below we design an optimization model for production capacity and apply combinatorial 

methods to solve it. 

 

1.2. Pseudo-Boolean optimization problems 

Unconstrained pseudo-Boolean optimization is an issue that studied enough by now. Algo-

rithms that have been designed and investigated in the area of unconstrained pseudo-Boolean 

optimization are applied successfully for solving various problems. Particularly, these are lo-

cal optimization methods [1, 2] and stochastic and regular algorithms based on local search 

for special function classes [3-6]. Moreover, there are a number of algorithms for optimization 

of functions given in explicit form: Hammer’s basic algorithm that was introduced in [7] and 

simplified in [8]; algorithms for optimization of quadratic functions [9-11], etc. Universal op-

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012001 doi:10.1088/1757-899X/122/1/012001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



timization methods are also used successfully: genetic algorithms, simulated annealing, taboo 

search [12, 13]. 

If there are constraints on the binary variables, one of ways to take into account it as is well 

known is construction and optimization of a generalized penalty function. Shortcoming of this 

approach is existence of a large number of local optima of the generalized function what will 

be shown below. If an accessible region is a connected one then this issue can be partly elimi-

nated, for example, by using local search with a stronger system of neighborhoods. Extension 

of search neighborhood reduces the number of local optima which locate mainly not far one 

from another in this case. 

If an accessible region is unconnected then using penalty functions and unconstrained op-

timization methods get complicated because the accessible region is usually too small with 

respect to optimization space. That makes difficult searching feasible solution. 

In this work heuristic procedures of boundary point search are considered for a constrained 

pseudo-Boolean optimization problem. Experimental investigation of the algorithms are de-

scribed, recommendations for their applying are given. 

 

2. Search Algorithms for Pseudo-Boolean Optimization 

2.1. Basic Definitions 

Consider some definitions that are necessary for describing optimization algorithm work 

[14].  

 A pseudo-Boolean function is called a real function of binary variables: 1

2: RBf n  , 

where  1,02 B , 2222 BBBBn   . 

 Points nB,XX 2

21   are called k-neighboring points if they differ in k coordinate value, 

nk ,1 . 1-neighboring points are called simply neighboring. 

 The set )(XOk
, nk ,0 , of all point of 

nB2 , that are k-neighboring to a point X , is called 

a k-th level of the point X . 

 A point set nll BXXXXXW 2

100 },,,{),(    is called a path between points 0X  and 
lX  if for li ,,1  the point iX  is a neighboring to 1iX . 

 A set nBA 2  is called a connected set if for AXX l  ,0  the path AXXW l ),( 0  ex-

ists. 

 A point nBX 2

*  , for which )(),()( *

1

* XOXXfXf  , is called a local minimum of 

pseudo-Boolean function f.  

 A pseudo-Boolean function that has an unique local minimum is called an unimodal on 
nB2  function. 

 An unimodal function f is called monotonic on nB2
 if nkXOX k

k ,1),( *  : 

),()( 1 kk XfXf   )()( 1

*

1

1 k

k

k XOXOX  

 . 

 

Example: A polynomial of binary variables 

 
 


m

j i

ijn

j

xaxx
1

1 ),...,( , 
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where },...,1{ nj  , is an unimodal and monotonic pseudo-Boolean function for 0ja , 

mj ,1 . 

 

2.2. Problem Statement 

Consider the problem of the following form 

nBSX
XC

2

max)(


 , (1) 

where )(XC  is a monotonically increasing from 0X  pseudo-Boolean function, 
nBS 2  is a certain subspace of the binary variable space; it is determined by a given con-

straint system, for example: 

mjHXA jj ,1,)(  . (2) 

In the general case a set of feasible solutions S is an unconnected set. 

 

2.3. Properties of a Feasible Set 

 A point AY  is a boundary point of the set A  if there exist (Y)OX 1  for which 

AX . 

 A point A )(XOY i

0  is called a limiting point of the set A  with the basic point 

Α0X  if for )(XO(Y)OX i

0

11    AX  holds. 

 A constraint that determine a subspace of the binary variable space is called active if the 

optimal solution of the conditional problem do not coincide with the optimal solution of the 

appropriate problem without taking the constraint into account. 

Consider some properties of a feasible set [15]. 

 If the object function is a monotonic unimodal function and the constraint is active then 

the optimal solution of the problem (1) is a point that belongs to the subset of limiting points 

of the feasible set S with the basic point 0X  in which the object function takes the lowest val-

ue:  

)(min)(
2

0 XCXC
nBX

 . 

 Consider a problem (1) with a constraint (2). If the constraint function (2) is an unimodal 

function then the set S of feasible solutions of the problem (1) is a connected set. 

A number of limiting points of a connected feasible set for the problem (1) equals 
 2

max

n

nCss  , where  2n  is the integer part of the value 2n . In case of maxss   all limit-

ing point belong to )( 0

2 XOn  if n is even and to )( 0

2)1( XO n  (or )( 0

2)1( XO n ) if n is odd.  

 

2.4. Transfer to Unconstrained Optimization 

One of ways to take into account constraints in conditional problems is construction a gen-

eralized penalty function. 

Consider the generalized function 





m

j

jj HXArXCXF
1

})(,0max{)()(  (3) 

for a problem (1) with constraints (2). 

In this case the following lemma occurs [15]: 
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The limiting points of the set S of the feasible points of the primary problem (1)-(2) with 

the basic point 
0X  are point of local maxima for generalized penalty function (3) with param-

eter r satisfying the condition 









m

j

jj HZA

XCZC
r

1

})(,0max{

)()(
 

for every limiting point )( 0XOX k  and every point )()( 1

0

1 XOXOZ k
  . 

So, a problem (1)-(2) is identical to the problem 

nBX
XF

2

max)(


 , (4) 

in which a number of local maxima (in case of connectivity of the feasible set) 
 2

max

n

nCss  . In general case, when feasible set is not connected, a number of local maxima 

theoretically can amount to 12 n . 

The problem (4) is solved by known search methods: local search, genetic algorithms, 

simulated annealing, etc.  

The essential shortcoming of this approach is loss of the monotonicity property for an ob-

ject function )(XC . By addition of even simple (for example, linear) constraints the general-

ized function becomes a polymodal nonmonotonic function with exponential number of local 

maxima. 

 

2.5. Heuristic Algorithms for Boundary Point Search 

For any heuristic of boundery point search we will consider a pair of algorithms – primary 

and dual [16]. A primary algorithm starts search from the feasible area and moves in a path of 

increasing of the objective function until it finds a limiting point of feasible area. Otherwise, a 

dual algorithm keeps search in the unfeasible area in a path of decreasing of the objective 

function until it finds some available solution. 

 

Total scheme of primary search algorithm 

1. Put 0

1 XX  , 1i . 

2. In accordance with a rule we choose SXOXOX iii  )()( 1

0

1 . If there are no 

such point then go to step 3; else 1 ii  and repeat the step. 

3. 1 iopt XX . 

 

Total scheme of dual search algorithm 

1. Put )( 0

1 XOX n , 1i . 

2. In accordance with a rule we choose )()( 1

0

1 iini XOXOX   . If SX i 1  then go to 

step 3; else 1 ii  and repeat the step. 

3. 1 iopt XX . 

 

From these schemes we can see that a primary algorithm finds a limiting point of the feasi-

ble area, but a dual algorithm finds a boundary point which may be not a limiting one. So a 

primary algorithm finds a better solution then dual in most cases for problems with a connect-

ed set of feasible solutions. If we will use a primary algorithm for a problem with a uncon-
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nected feasible area then solution received in result may be far from the optimal because fea-

sible and unfeasible solutions will rotate in a path of increasing of the objective function. For 

these cases a dual algorithm is more useful, because this rotation does not play any role for it. 

For improving the solution that given by the dual algorithm, it is recommends to apply the 

corresponding primary algorithm. Such improving is very significant in practice. 

Boundary point search algorithms considered below differs by only a rule of choice of a 

next point in step 2 of the total schemes. 

 

Rule 1. Random search of boundary points (RSB) 

A point 1iX  is chosen by random way. Each point in the next step can be chosen with 

equal probabilities. For real-world problems these probabilities can be not equal but they are 

calculated in the basis of problem specific before search starts.  

 

Rule 2. Greedy algorithm 

A point 1iX  is chosen accordance with the condition 

)(max)( 1

j

j
i XX   , 

where SXOXOX ii

j  )()( 1

0  for a primary algorithm and )()( 1

0

iin

j XOXOX    for a 

dual one. 

The function )(X  is chosen from problem specific, for example:  

- the objective function )()( XCX  , 

- specific value )()()( XAXCX   (for only constraint) and so on. 

 

Rule 3. Adaptive random search of boundary points (ARSB) 

A point 1iX  is chosen by random way in accordance with a probability vector 

),...,,( 21

i

J

iii pppP  , 

where J is the number of points from which choice is made. 









J

l

l

j
i

j

X

X
p

1

)(

)(
, Jj ,1 , 

where SXOXOX ii

j  )()( 1

0  for a primary algorithm and )()( 1

0

iin

j XOXOX    for a 

dual one. 

ARSB is an addition to the greedy algorithm. 

 

Rule 4. Modificated random search of boundary points (MRSB) 

A point 1iX  is chosen accordance with the condition 

)(max)( 1

r

r
i XX   , 

where 
rX  are points chosen accordance with the rule 1, Rr ,1 ; R is a algorithm parameter. 

 

A greedy algorithm is regular algorithm, so it finds equivalent solutions under restart from 

a certain point. Other algorithms can be started several times and the best solution can be se-

lected from found solutions. Run time of each algorithm start is constrained by  
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2

)1( 


nn
T , 

but average run time of a greedy algorithm and ARSB is significant larger than for other 

because they looks over all point of the next level in each step in distinction from RSB and 

MRSB which look over only one and R points correspondingly in each step in the dual 

scheme.  

Further we consider applying the described algorithms for one of real-world problems with 

large dimension and unconstrained set of feasible solutions. 

 

3 . Foundry Branches Production Capacity Optimization 

Production of different kind is produces in foundry branches (FB). There is specialization 

in every FB by kind of production which can be produced by its foundry machines (FM). 

There is a quantity of orders for production. To each order there corresponds volume, a kind 

of production and term of performance. The kind of production is characterized by productivi-

ty for change (only 3 changes in day). Replacement made on FM production demands its 

recustomizing borrowing one change. It is necessary to load thus FB capacities that orders 

were carried out all, production was made in regular more intervals in time, and the number of 

recustomizings of FM equipment was minimal. 

 

Input data: 

I  is a number of day for planning; 

J is a number of FB; 

jK  is a number of FM in j-th FB, Jj ,1 ; 

L  is a number of orders for production that produces on FM (and corresponding number of 

production kinds); 

lV  is productivity of l-th kind of production for change on FM, Ll ,1 ; 

lT  is term of performance of l-th order (for production of l-th kind) on FM, Ll ,1 ; 

lW  is volume of l-th order (for production of l-th kind) on FM, Ll ,1 ; 

jlz  characterizes specialization of FB: 











otherwise;  ,0

kind,th  -  of                                           

  production  makecan    FBth  -  of FM  ,1

l

j

z jl

 
  is the factor of rigidity of restriction on demand of uniformity of production on days, 

10  . 

 

Variables: 

For model construction introduce following binary variables: 
n

ijkl ByY 2}{  , 

n

ijkl BxX 2}{  , 

where  1,02 B , 2222 BBBBn    is a set of binary variables. 
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









otherwise; ,0

FB,th - of FMth -on day th -in     

made is kindth - of production ,1

jki

l

yijkl  











otherwise; ,0

FB,th - of FMth -on day th -in     

make  tostarted is kindth - of production ,1

jki

l

xijkl  

Total dimension of a binary vector Y (and X) is 





J

j

jKLIn
1

. 

Remarks: 

1. For lkji ,,, :  

ijklijkl yx  . 

2. For lkji ,,, :  

)1( ,1 jkliijklijkl yyx   (5) 

( 00 jkly  lkj ,, ). 

 

3.1. Optimization Model 

1. The objective function and the main constraints 

min)( XC , (6) 

ll WYA )(1 , Ll ,1 , (7) 

I

i WYA )(2 , Ii ,1 , )1,0( , IWW
L

l

l

I 



1

, (8) 

where  
   



   


I

i

J

j

K

k

L

l

jkliijkl

I

i

J

j

K

k

L

l

ijkl

jj

yyxXC
1 1 1 1

,1

1 1 1 1

1)( , 

 
  


l jT

i

J

j

K

k

jkliijklll yyVYA
1 1 1

,1

1 2)( , 

 
  


J

j

K

k

L

l

jkliijklli

j

yyVYA
1 1 1

,1

2 2)( , 

00 jkly  lkj ,, . 

2. The additional constraints 

1
1




L

l

ijkly  ( 1
1




L

l

ijklx ), Ii ,1 , Jj ,1 , jKk ,1 , (9) 

jlijkl zy   ( jlijkl zx  ), Ii ,1 , 

Jj ,1 , jKk ,1 , Ll ,1 . (10) 
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3.2. Model Properties 

1. There are two spaces of binary variables (denote their by XB  and YB ) corresponding 

vectors X and Y. For each point YBY   a unique point XBX   corresponds, components of 

which are determined by relation (5). Several points YBY   (with different value of con-

straint function) can correspond to the point XBX  . 

2. The objective function (6) is linear and unimodal monotonic in space XB  with the min-

imum point )0,...,0(0 X . In space YB  the objective function is quadratic and unimodal 

nonmonotonic with the minimum point )0,...,0(0 Y . 

3. The constraint function (7) and (8) in space YB  are quadratic and unimodal monotonic 

pseudo-Boolean functions with the minimum point )0,...,0(0 Y . In space XB  the constraint 

functions unequivocally are not certain. 

4. The feasible set in spaces XB  and YB  is limited from above by 



J

j

jKI
1

-th level of the 

minimum point ( 0X  and 0Y ) according to the constraint (9). In space YB  this level corre-

sponds to the case when production is produces on each BM in every day. 

5. The feasible set is an unconnected set in general case (in space YB ). 

 

Thus the problem solution is defined completely by the variables Y, but it does not hold for 

the variables X. But the objective function from X has good constructive properties so that op-

timum search on X is more efficient then on Y. As the constraint function (7), (8) from X are 

not defined, we should find values of these functions from the corresponding point Y. There 

are perhaps several such points 

HYYYX ,...,, 21 , 

in some of them the solution may be feasible but in other not. As the constraint functions are 

monotonic here then for a certain X we should choose such Y that belongs to the most possible 

level (with the most values of the functions): 














 


lkji

h

ijkl
HhY

yY
h ,,,

,1,
maxarg , where ),...,( 1111 LIJKh J

yyY  . 

One of algorithms of this transformation is presented below. 

 

Algorithm 1 of transformation X to Y 

1. Put 0jkN , Jj ,1 , jKk ,1 ; 1i . 

2. For Jj ,1 , jKk ,1 , Ll ,1  do: if 1ijklx  then lN jk  . 

3. For Jj ,1 , jKk ,1 , Ll ,1  do: if lN jk   then 1ijkly  else 0ijkly . 

4. If Ii   then 1 ii  and go to step 2. 

 

At the same time the solution Y received from the found best vector optX  by this way may 

corresponds to situation when a quantity of let out production is higher than the requisite val-

ue (this does not contradict to the constructed model but this can influent on uniformity of ca-

pacities loading which is optimized on the next stage). So when the first stage of search has 

ended, we should define optY  by the rule 
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Hopt YYYX ,...,, 21 , 














 


lkji

h

ijkl
LlWYAY

opt yY
lhlh ,,,

,1,)(: 1
minarg . 

In this case the transformation algorithm has some differences from the previous. 

 

Algorithm 2 of transformation X to Y 

1. Put 0jkN , Jj ,1 , jKk ,1 .  

1а.  Put 0ijkly , Ii ,1 , Jj ,1 , jKk ,1 , Ll ,1 ;  1i . 

2. For Jj ,1 , jKk ,1 , Ll ,1  do: if 1ijklx  then lN jk  . 

3. For Jj ,1 , jKk ,1 , Ll ,1  do: if lN jk   and ll WYA )(1  then 1ijkly . 

4. If Ii   then 1 ii  and go to step 2. 

 

Here the condition ll WYA )(1  is added in the step 3, and the step 1a is added also for pos-

sibility of this calculation. There are no any needs in this transformation during the search. It 

is necessary only for determining result optY . 

 

3.3. Optimization Algorithms 

The dual algorithms RSB, greedy and MRSB have been used for solving the problem. The 

algorithm ARSB has not been considered for this problem because of its excessive large run 

time by frequent start. One start of ARSB can very rarely give a solution which is better than 

the solution given by the greedy algorithm. The start point of search is the point of the uncon-

straint minimum of the objective function )0,...,0(0 X . A found solution has been improved 

by the corresponding primary algorithm. 

Moreover, the problem has been solved by the genetic algorithm (GA). To realize GA we 

have chosen a scheme that effective worked for multiple solving other combinatorial optimi-

zation problems. 

Results of the experiments shows that the most effective algorithms (by precision and run 

time) from the considered ones for this problem are the greedy algorithm and MRSB. The 

other algorithms under hard constraints on the variables do not find any accessible solution at 

all. It is a sequel of problem specific: a large amount of different constraints and, as a result, a 

comparative small accessible region.  

The average results of solving 10 problems of month planning capacity loading are pre-

sented in the table 1. The average values of input data: 

31I , 3J , 121 K , 92 K , 73 K , 36L , 5.0 ,  

]50,40[lV , ]25000,20[lW . 

Herewith the total dimension of the binary vector is 31248n . 

The number of algorithm starts L has been chosen so that the run time nearly equals to the 

run time of one start of the greedy algorithm. In this case the run time equals to 5108 T . 
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 Table 1. Optimization results 

 

Algorithm Number of starts L Found solution Copt 

RSB 2000 Not found 

Greedy 1 49 

MRSB, R=1000 12 47 

MRSB, R=100 60 52 

MRSB, R=10 200 Not found 

GA* - Not found 

* - GA parameters: turnir selection with the turnir value 5, population value 100, the largest 

number of generations 8000, mutation probability 0.0001. 

 

MRSB is a more flexible procedure in compare with the greedy algorithm as the first one 

allows selecting the parameters L and R that influence on algorithm run time and solution pre-

cision. The greedy algorithm does not allow that possibility and run time may be overmuch 

large under high dimensions. What about their efficiency, precision of the found solutions dif-

fers unessentially under nearly equivalent run time. 

So, the algorithms of boundary point search show high efficiency for solving the pseudo-

Boolean optimization problem with unconnected accessible region. The most efficient algo-

rithms for the considered problem are the dual algorithms MRSB and greedy. 
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