
Combined string searching algorithm based on knuth-morris-

pratt and boyer-moore algorithms

R Yu Tsarev
1
, A S Chernigovskiy

1
, E A Tsareva

2
, V V Brezitskaya

2
, A Yu

Nikiforov
1
, N A Smirnov

2

1
Siberian Federal University, Krasnoyarsk, Russia

79, Svobodny Prospect, Krasnoyarsk, Russia
2
Siberian State Aerospace University, Krasnoyarsk, Russia

31 “Krasnoyarskiy Rabochiy” prospect, Krasnoyarsk, 660037, Russia

E-mail: tsarev.sfu@mail.ru

Abstract. The string searching task can be classified as a classic information

processing task. Users either encounter the solution of this task while working with

text processors or browsers, employing standard built-in tools, or this task is solved

unseen by the users, while they are working with various computer programmes.

Nowadays there are many algorithms for solving the string searching problem. The

main criterion of these algorithms‟ effectiveness is searching speed. The larger the

shift of the pattern relative to the string in case of pattern and string characters‟

mismatch is, the higher is the algorithm running speed. This article offers a combined

algorithm, which has been developed on the basis of well-known Knuth-Morris-Pratt

and Boyer-Moore string searching algorithms. These algorithms are based on two

different basic principles of pattern matching. Knuth-Morris-Pratt algorithm is based

upon forward pattern matching and Boyer-Moore is based upon backward pattern

matching. Having united these two algorithms, the combined algorithm allows

acquiring the larger shift in case of pattern and string characters‟ mismatch. The article

provides an example, which illustrates the results of Boyer-Moore and Knuth-Morris-

Pratt algorithms and combined algorithm‟s work and shows advantage of the latter in

solving string searching problem.

1. Introduction

The searching problem is one of fundamental tasks of theoretical programming [10]. String

searching is one of simple, but, nonetheless, extremely important problems. The importance

of this problem is explained by the wide area of its solution results‟ application: text editors,

online string matching, speech analysis and recognition, information retrieval, network

content inspection, data compression, etc. [4].

Nowadays there are many algorithms for solving this problem developed. During the last

thirty years numerous algorithms, which allow solving the problems of searching with some

special characteristics, were offered. M. Ahmed, M. Kaykobad and R.A. Chowdhury

developed a new string matching algorithm that unlike other sub-linear string-matching

algorithms never performs more than n text character comparisons while working on a text of

length n [1]. T. Lecroq proposed string matching algorithms based on hashing q-grams [9]. K.

Fredriksson and S. Grabowski developed new exact bit-parallel string matching algorithm,

based on the shift-or algorithm [2, 5]. They have shown how to adapt their techniques for the

shift-add algorithm, obtaining optimal time for searching under Hamming distance [5]. L. He,

B. Fang and J. Sui have used the concept of a window whose size is equal to pattern length.

They presented a novel string matching algorithm named wide window algorithm [6]. A.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Hudaib et al. in [7] presented two sliding windows algorithm. The algorithm makes use of

two sliding windows. Both windows slide in parallel over the text until the first occurrence of

the pattern is found or until both windows reach the middle of the text.

The inexhaustible interest towards this sphere of problems confirms the importance and

topicality of the string searching problem. This article offers an algorithm based upon two

well-known and acknowledged string searching algorithms. This kind of combination allows

increasing the effectiveness of solving the given problem.

2. Theoretical bases of the combined algorithm

The combined string searching algorithm is based upon two algorithms. One of them was

developed by Knuth, Morris and Pratt, and the other one by Boyer and Moore. These

algorithms belong to two quite big sub-classes of string searching algorithms. Knuth-Morris-

Pratt algorithm belongs to forward pattern matching sub-class, and Boyer-Moore belongs to

backward pattern matching sub-class. Two stages can be identified in the work of these

algorithms:

1. Preparing of table d used in case of shifting of the pattern in the string.

2. String searching itself.

Let us have a look at the work of these string searching algorithms in detail. The

description will be followed by examples and explanations with the help of C language.

2.1. Principles of Knuth-Morris-Pratt string searching algorithm

The algorithm was developed by D. Knuth and V. Pratt, and independently by J. H. Morris in

1974, but it was published by them collaboratively only in 1977 [8]. This algorithm is based

upon the idea that after partial matching of the initial part of the pattern with the

corresponding characters of the string, we get certain information on the basis of the pattern

itself, and this information will allow us to move forward along the string not by one, as in

case of naive string matching, but further. In order to do that, when shifting, Knuth-Morris-

Pratt string searching algorithm (or KMP algorithm) uses table d, which is preprocessed

before the beginning of string searching. Since table d preprocessed in compliance with KMP

algorithm will also be used in combined algorithm, let us denote it as dKMP.

Thus, table dKMP for Knuth-Morris-Pratt string searching algorithm is preprocessed on

basis of the pattern and contains values, which will be used further for calculation of the shift

amount of the pattern. The size of the table is equal to the length of the pattern. Therefore,

table dKMP is in fact a one-dimensional array, consisting of the number of elements equal to

the number of characters in the pattern.

The first element of the array dKMP is always minus one.

Let us have a look at the formation of the table dKMP in the example of the pattern

“barbarian”. As it is shown in Figure 1, the first element of the table d, corresponding to the

first character of the pattern “b” is equal to minus one.

b a r b a r i a n

–1

Figure 1. Pattern and value of the first element of table dKMP.

For the other characters, the values of the elements of table dKMP are calculated in the

following way. The value of dKMP[j] corresponding to character j of the pattern is equal to the

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

2

maximum number of characters, which directly precede the given character and match with

the beginning of the pattern. If k characters precede the given character, then only k−1

preceding characters are taken into account.

Thus, Figure 2 shows that one character “b” directly precedes the fifth character “a”, and

matches with character b at the beginning of the pattern. Both characters “b” are in bold type.

Since the number of matching characters is equal to one, element of the table, corresponding

to the fifth symbol of the pattern “a” receives value one (see Figure 2).

b a r b a r i a n

–1 1

Figure 2. Pattern and value of the fifth element of table dKMP.

Two characters “ba” directly precede the sixth character of the pattern r and match with the

characters “ba” at the beginning of the pattern. Both pairs of characters “ba” are in bold type.

Since the character “r” is preceded by two characters, matching with the first two characters

of the pattern, the corresponding element of the table is given the value 2 (see Figure 3).

b a r b a r i a n

–1 1 2

Figure 3. Pattern and value of the sixth element of table dKMP.

No other characters of the pattern “barbarian” are preceded by characters, matching

with the beginning of the pattern; therefore the corresponding elements of the table

dKMP are equal to zero (see Figure 4).

b a r b a r i a n

–1 0 0 0 1 2 0 0 0

Figure 4. Pattern and table dKMP.

The second stage of KMP algorithm work is comparing characters of the string and

characters of the pattern and calculating the shift amount in case of their mismatch. The

characters are considered from the left to the right, i.e. from the beginning to the end of the

pattern. In case of mismatch of characters of pattern and string, the pattern is shifted to the

right along the string by following value:

j – dKMP[j],

in which j is an index of the currently considered character of the pattern, dKMP[j] is the

value of the table dKMP, corresponding to this character.

Figure 5 shows an example illustrating the shift of the pattern during the work of KMP

algorithm.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

3

String B a r b e r …

Pattern B a r b i

j 0 1 2 3 4

dKMP[j] –1 0 0 0 0

 B a r b i

j = 4, dKMP[4] = 0,

shift = j – dKMP[j] = 5

Figure 5. Partial match and shift of the pattern.

Let us give an example of string searching of the pattern “barbarian”. Figure 6 shows the

process of KMP algorithm work. The characters that are being compared are underlined.

b a r i s f u l l o f b a r b a r i a n s

b a r b a r i a n

 b a r b a r i a n

 b a r b a r i a n

 …

 b a r b a r i a n

 b a r b a r i a n

Figure 6. Process of work of Knuth-Morris-Pratt string searching algorithm.

Pay attention to the fact that in every case of characters‟ mismatch, the pattern is shifted by

the whole passed length, because smaller shifts cannot lead to full match.

As far as the effectiveness of Knuth-Morris-Pratt string searching algorithm is concerned,

its developers show that about n + m character comparisons are needed, which is better that n

* m comparisons in case of naive string matching (where n is length of the string, m is length

of the pattern, 0 < m < n) [8, 10]. In this case, the string scanning indicator i never goes back,

while in case of naive string matching, after a mismatch, the considering starts again from the

first character, and therefore the string characters that have been considered before might be

processed again.

However, string searching with the use of Knuth-Morris-Pratt string searching algorithm is

helpful only in case if the mismatch of string and pattern characters was preceded by some

number of matches. If the comparison of the string with the pattern shows that first characters

are different, the pattern shifts by only one character. The pattern shifts more than by one only

in case if several characters of string and pattern match.

2.2. Principles of Boyer-Moore string searching algorithm

In 1977 R.S. Boyer and J.S. Moore offered an algorithm, which not only improves the

processing of the worst case, but also gives and advantage in general case [3]. Boyer-Moore

string searching algorithm (or BM algorithm) is based upon an unusual idea –characters‟

comparing starts not from the beginning, but from the end of the pattern. The speed of Boyer-

Moore algorithm‟s running is achieved at the expense of omitting parts of the text, which

certainly do not participate in successful comparison.

As well as in case of KMP algorithm, table d is preprocessed basing upon the pattern

before the beginning of searching, and then used when shifting of the pattern along the string.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

4

Since this table will also be used in the work of the combined algorithm, let us denote it as

dBM.

Initially all the elements of the table dBM are given the values equal to the length of the

pattern.

On the next stage, every element of the table dBM is given a value equal to the remoteness

of the corresponding character of the pattern from the end of the pattern. Figure 7 shows the

pattern and remoteness of each of its characters from the end of the pattern.

b a r b a r i a n

8 7 6 5 4 3 2 1

Figure 7. Pattern and remoteness of each of its characters from the end of the pattern.

In case if a pattern contains several identical characters, the element of table dBM

corresponding to this character is given the value equal to remoteness from the end of the

pattern of the rightmost character [10]. For example, the pattern “barbarian” contains three

characters “a”, and remoteness of the rightmost from the end of the pattern is equal to one. In

connection with this, the elements of table dBM corresponding to the rest of characters “a” in

the pattern are given the value equal to one (see Figure 8). Similarly, elements of table dBM

corresponding to all the characters “r” are given the value of three, and the elements

corresponding to characters “b” will have the value of five.

b a r b a r i a n

5 1 3 5 1 3 2 1

Figure 8. Pattern and table dBM.

During the implementation of Boyer-Moore string searching algorithm, as well as during

the implementation of the combined algorithm, it is recommended to use the table of character

codes ASCII for creation of table dBM.

Every printed character has its own ASCII code. For example, the code of the character “a”

is 97, the code of “r” is 114, and the code of space is 32. It can also be mentioned that the

codes of Cyrillic characters are situated between 192 and 255.

Table ASCII contains 256 characters, that is why table dBM can be named a one-

dimensional integer-valued array consisting of 256 elements: int d[256].

Let us have a look at the peculiarities of software implementation of table dBM through the

example of the pattern “barbarian”. Since this pattern contains nine characters, its length is

nine. Correspondingly, on the stage of initialization all the elements of the table dBM are given

the value of nine:

d[0] = d[1] = … = d[254] = d[255] = 9.

Then elements of table dBM are given the corresponding values equal to the remoteness of

the given character from the end of the pattern. The index of the element of table dBM that is

given a new value is identified by the ASCII code of the considered character.

For example, ASCII code of character “a” is 97. The value of the elements of table dBM

corresponding to it, as it was already shown on Figure 9, is equal to one. Therefore:

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

5

d[97] = 1.

It can also be written in the C language:

d[„a‟] = 1.

It can also be mentioned that during the implementation the element of array d with the

index of 97 corresponds to all the characters “a” in the pattern “barbarian”. Thus, all the

elements of table dBM corresponding to the characters “a” of the pattern in such case are given

the value of 1 (see Figure 9).

The values of the elements of table dBM corresponding to characters “i”, “r”, “b” change in

the similar way:

d[„i‟] = 2 or d[105] = 2,

d[„r‟] = 3 or d[114] = 3,

d[„b‟] = 5 or d[98] = 5.

Finally, the element of table dBM corresponding to the character situated in the end of the

pattern should be given the value of one:

d[„n‟] = 1 or d[110] = 1.

The necessity of assigning value of one and not zero (since its remoteness from the end of

the pattern is equal to zero) is connected with the peculiarities of calculation of shift amount

directly during the string searching.

The second stage of BM algorithm work is string searching itself. While comparing the

pattern and the string, the pattern moves from the left to the right along the string. However,

pattern and string characters are compared from the right to the left along the pattern. That is

the peculiarly of backward pattern matching.

The comparison of the pattern and the string is carried out 1) until the whole pattern is

considered, which indicates that there is a match between the pattern and some part of the

string, 2) until the string ends, which means that there are no entries matching the pattern in

the string, 3) until there is a mismatch of the pattern and string characters, which leads to

shifting of pattern by several characters to the right and continuing the searching process.

In case of characters‟ mismatch, shift of the pattern along the string is defined by the value

of the element of table dBM. However, the index of the given element is the ASCII code of the

character of the string. It can be emphasized that although array d is formed on the basis of the

pattern, the shift is defined by the mismatching character of the string. Figure 9 shows an

example of BM algorithm work. The characters that are being compared are underlined.

b a r i s f u l l o f b a r b a r i a n s

b a r b a r i a n

 b a r b a r i a n

 b a r b a r i a n

 b a r b a r i a n

Figure 9. Process of work of Boyer-Moore string searching algorithm.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

6

In the first iteration there was a mismatch of the pattern character n and string character u.

It should be pointed out that the values of all the elements of array d for all the possible

characters on the stage of initialization are equal to the length of the pattern, i.e. to nine. Since

character “u” is not found in the pattern, the value of the element d[„u‟] in further formation

of the table is not changed and remains equal to nine. That is why the pattern is shifted by

nine characters to the right. If these two characters matched, the last but one pattern character

and the corresponding string character would be considered next, etc.

While comparing the pattern and the string there is a mismatch of characters “n” and “r”.

Once again, defining the shift with the help of the string character (d[„r‟]), we get the value of

three. The pattern shifts to the right by three characters. Similarly, the pattern gradually shifts

along the string, until the pattern is found in the string or until the string ends.

The evaluation of BM algorithm effectiveness shows that almost in all cases the algorithm

demands far less n comparisons. In the most favorable conditions, when the last pattern

character falls into the mismatching string character, the number of comparisons is n / m [3,

10].

2.3. Combination of Knuth-Morris-Pratt and Boyer-Moore string searching algorithms

Based upon the mentioned principles of Knuth-Morris-Pratt и Boyer-Moore string searching

algorithms concerning the creation of tables for defining the shift and string searching itself

the following combined algorithm has been offered.

Step 1. Creating table dKMP according to the principles of Knuth-Morris-Pratt string

searching algorithm.

Step 2. Creating table dBM according to the principles of Boyer-Moore string searching

algorithm.

Step 3. Defining the initial value of index i, corresponding to the position of the pattern

relative to the string.

Step 4. Defining the initial values of indices jKMP and jBM, which indicate the beginning and

the end of the pattern respectively.

Step 5. Comparing the pattern character with index jKMP and the corresponding string

character, comparing the pattern character jBM and the corresponding string character. If at

least one comparison ends with a mismatch, go to Step 11.

Step 6. If jKMP is less than jBM, go to Step 9.

Step 7. Output of the message informing that the pattern matches with a part of the string.

Step 8. Go to Step 15.

Step 9. Increasing index jKMP by one (i.e. going to the next character to the right),

decreasing index jBM by one (i.e. going to the next character to the left).

Step 10. Go to Step 5.

Step 11. Choosing the larger shift from jKMP – dKMP[jKMP] and dBM[i + pattern length – jBM].

Step 12. Shifting the pattern to the right relative to the string, increasing the value of index

i by the shift defined in Step 11.

Step 13. If the sum of index i and the length of the pattern is less than the length of the

string, go to Step 4.

Step 14. Output of the message informing that the target pattern is not found.

Step 15. Stop.

The combined algorithm allows finding matches between the pattern and a part of the

string with a smaller number of shifts, due to the fact that in Step 11 a larger shift is chosen

out of two shifts, which can be received with Knuth-Morris-Pratt and Boyer-Moore string

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

7

searching algorithms. At the same time, these algorithms themselves guarantee that however

large the shift is, no match of the pattern and the string will be overlooked.

3. Results and discussion

The combined string searching algorithm based upon Boyer-Moore and Knuth-Morris-Pratt

string searching algorithms was implemented within computer programme InfoSearch. This

programme allows carrying out the analysis of work of Boyer-Moore, Knuth-Morris-Pratt

algorithms and the combined algorithm. The interface of the programme is shown in Figure

10.

Figure 10. Interface of the programme implementing the combined string searching

algorithm.

The analysis of the considered string searching algorithms work results can be shown in

the example of The Tragedy of Hamlet, Prince of Denmark written by William Shakespeare.

Table 1 shows the results of the algorithms when searching for the words written in the first

column.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

8

Table 1. Results of string searching algorithms

Word Position

Shifts

Knuth-Morris-

Pratt algorithm

Boyer-Moore

algorithm

Combined

algorithm

amen 48474 48306 13778 13752

antique (1
st
 occurrence) 68539 67756 11676 11667

antique (2
nd

 occurrence) 179186 177135 30677 30646

cozenage 166058 165546 24932 24921

habit (1
st
 occurrence) 24743 24519 5738 5729

habit (2
nd

 occurrence) 29215 28949 6762 6751

habit (3
rd

 occurrence) 113830 112669 26005 25973

habit (4
th
 occurrence) 171586 169831 39245 39204

herb 136155 133534 37481 37423

marble 30208 30025 5985 5948

marvel 18318 18193 3624 3592

matron 111378 110925 22596 22588

theme (1
st
 occurrence) 14063 13587 3171 3161

theme (2
nd

 occurrence) 161372 156067 36456 36390

thieves 138812 135466 23527 23480

sea-fight 165436 164562 23227 23177

stone (1
st
 occurrence) 129310 128472 31382 31341

stone (2
nd

 occurrence) 140499 139599 34100 34057

The analysis that was carried out reveals that the combined algorithm needs by several

times less shifts than Knuth-Morris-Pratt algorithm to find an entry of the pattern into the

string.

The combined algorithm also shows better results in terms of required number of shifts in

comparison with Boyer-Moore algorithm, although this time the advantage is not as vivid as

the advantage of the combined algorithm over Knuth-Morris-Pratt algorithm.

4. Conclusion

This article presents a solution of a task, which is extremely important for computer analysis –

namely, string searching. The offered solution develops theoretical basis of methods for

language data computer analysis and serves the purposes of solving practical computer

linguistics tasks.

The developed combined string searching algorithm has united the advantages of well-

known Knuth-Morris-Pratt and Boyer-Moore string searching algorithms. The distinction of

combined algorithm lies in higher effectiveness in comparison with the initial algorithms and

larger shifts in case of mismatch of string and pattern characters, which increases the speed of

pattern entry in the string. The combined string searching algorithm can be successfully

implemented for searching in English and Russian texts.

5. Acknowledgements

The authors would like to thank Ahmad Hassanat from Mu‟tah University, Jordan, for

consultations while studying string searching algorithms.

References
[1] Ahmed M, Kaykobad M and Chowdhury R A 2003 A new string matching algorithm Int. J.

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

9

Comput. Math. 80 825–834

[2] Baeza-Yates R A and Gonnet G H 1992 A new approach to text searching Commun. ACM 35

74–82

[3] Boyer R S and Moore J S 1977 A fast string searching algorithm Commun. ACM 20 762–772

[4] Faro S and Lecroq T 2013 The exact online string matching problem: A review of the most

recent results ACM Comput. Surv. 45

[5] Fredriksson K and Grabowski S 2005 Practical and optimal string matching Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 3772 LNCS 376-387

[6] He L, Fang B and Sui J 2005 The wide window string matching algorithm Theor. Comput. Sci.

332 391-404

[7] Hudaib A, Al-Khalid R, Suleiman D, Itriq M and Al-Anani A 2008 A fast pattern matching

algorithm with two sliding windows (TSW) J. Comput. Sci. 4 393-401

[8] Knuth D, Morris J H, Pratt V 1977 Fast pattern matching in strings SIAM J. Comput. 6 323–350

[9] Lecroq T 2007 Fast exact string matching algorithms IPL 102 229-235

[10] Wirth N 1985 Algorithms and data structures (NJ: Prentice Hall)

XIX International Scientific Conference Reshetnev Readings 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 122 (2016) 012034 doi:10.1088/1757-899X/122/1/012034

10

