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Abstract. The influence of Fe on the nucleation potency of TiB2 particles was investigated by 

employing grain refinement of high purity aluminium in this study. Experiment results showed 

that without Fe, high purity aluminium cannot be refined by 0.8wt.% addition of Al-5Ti-1B. 

However, high purity aluminium containing 0.08wt.% Fe can be refined effectively by 0.2wt.% 

addition of Al-5Ti-1B, its grain size was about 206µm in diameter. Fine equiaxed grains of 

about 153µm in diameter can be obtained for high purity aluminium containing 0.08wt.% Fe 

and 0.006wt.% Ti. Grain refinement mechanism should include nucleation and dendrite 

remelting and multiplication. Both nucleation and dendrite remelting and multiplication played 

essential role on the grain refinement of aluminium. The effect of Fe was linked to increase 

active nuclei by segregation on TiB2 surface and then to promote nucleation of α-Al. The 

performance of Ti was to enhance the dendrite remelting and multiplication by forming small 

conglomeration zones of Ti atoms concentrated around TiB2 particles. 

1. Introduction 

Addition of Al-Ti-B mater alloys into molten aluminium has become a standard and effective practice 

in aluminium foundries worldwide in order to enhance mechanical properties, reduce ingot cracking, 

improve feeding, improve the homogeneity of the cast structure by obtaining fine, equiaxed grains 

after solidification. To understand the mechanism of grain refinement and to promote the development 

of Al-Ti-B refiner, during the last several decades, various theories had been proposed to explain the 

experimental observations. There is a friendly consensus that the excess Ti and TiB2 particles are 

necessary and important for commercial pure aluminium (CPAl) obtaining a good grain refinement 

result [1-7].  

Ti was considered as the strongest element to act as growth restriction factor (GRF). Usually, Q is 

referred to as the growth restriction factor, and is a measure of the growth-restricting effect of solute 

elements on the growth of the solid-liquid interface in the absence of solute interactions [3, 8, 9]. It is 

defined as mc0(k-1), where m is the slope of the liquidus, C0 is the concentration of the solute in the 

alloy, and k is the equilibrium partition coefficient between the solid and liquid at the growing 

interface. Empirically, the average grain size can be described as a liner function of 1/Q for various Al 

alloy. The effects of solute content on grain refinement in an isothermal melt studied by Men and Fan 

[10] indicate that 1/3 power law can describe the experimental data more accurately than a linear 

relationship. 

For excess Ti, another important role is that it can change the interface between TiB2 and Al by 

forming TiAl3 interfacial layer. Shumacher and Greer [11-13] revealed that a thin TiAl3 layer about 

4th International Conference on Advances in Solidification Processes (ICASP-4) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 117 (2016) 012005 doi:10.1088/1757-899X/117/1/012005

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

3nm in thickness was formed between the TiB2 and the α-Al by observation of Al85Y8Ni5Co2 metal 

glass inoculated with an Al-Ti-B master alloy. Mohanty and Gruzleski [14] reported that the formation 

of interfacial TiAl3 layer at the TiB2/Al interface can nucleate α-Al, in which the interface was 

confirmed by electron probe micro-analytical techniques (EPMA) and the nucleation of α-Al was 

proved by observation of boride particle within equiaxed grains. 

In principle, the mechanism of grain refinement is quite straight forward [14]. When the added   

Al-Ti-B master alloy dissolves, numerous potent heterogeneous nuclei (TiB2 with TiAl3 layer) are 

released and dispersed into the melt, and subsequently a large number of these sites act as active 

nucleants during solidification [6, 14]. 

Our previous work testified that 0.2% addition of Al-5Ti-1B cannot refine high purity aluminium 

(HPAl) effectively [15, 16]. According to the dominant grain refinement mechanism, 0.2% addition of 

Al-5Ti-1B must refine HPAl effectively. But the experiment results against the prediction of dominant 

grain refinement mechanism. Therefore, we should reconsider the grain refinement mechanisms and 

try to explain the new phenomena reasonably. Furthermore, clearly the understanding of grain 

refinement mechanisms can promote further development of this kind of grain refiner. 

For grain refinement, another very important method is to refine aluminium by physical method, 

including electromagnetic vibration [17-19], and pulse magneto-oscillation technique [20]. The 

principle of this kind of grain refinement mechanism is to achieve grain multiplication by promoting 

collapse of dendrite arms, dendrite fragmentation caused by vibration or stirring. Besides, another 

technique to achieve grain refinement using dendrite multiplication mechanism was made by 

Wannasin [21], in which gas bubbles were employed to agitate a molten metal during solidification. 

During this process, the “mother dendrites” created at the cold surfaces are fragmented resulting in 

grain multiplication. The physical method of grain refinement indicates that the dendrite remelting and 

multiplication plays an important role in the refinement process. 

In the present study, to reveal the essence of grain refinement mechanism of aluminium properly, 

the effect of Fe, Si and Ti on the grain refinement of HPAl was investigated. According to the 

experiment results, an improved grain refinement mechanism was proposed.  

2. Experiment 

Al-5Ti-1B master alloys (LSM, UK) were employed for studying grain refinement of HPAl 

(>99.99wt.%Al, hereafter, all compositions are denoted in wt%). For studying the behaviour of Fe and 

Ti on the grain refinement process of HPAl, pure Fe and Al-10Ti were used for the present purpose. 

TP-1 testing method [22] was employed to evaluate the grain refinement performance of different 

refiner on aluminium. In each case the melt was maintained at 720±5ºC and slow stir was maintained 

to disperse refiner uniformity and keep the particles suspended in the melt for about 30 seconds with a 

graphite rod after addition was completed melting. The melt was held for 10 minutes and then cast into 

TP-1 mould. Each cone is sectioned perpendicular to its axis 38mm from its base for macro-analysis, 

ground mechanically on 200 grit and 400 grit water-proof adhesive papers and then etched in reagent 

(45 mL HCl, 15 mL HNO3, 15 mL HF, 25 mL H2O) to reveal the macro-structural feature. Normally, 

the sample for assessment of grain refinement was taken from the center of sample (center grain). For 

TP-1 sample, the solidification is occurred from the periphery of TP-1 mould to the center. Therefore, 

to assess the grain refinement properly, the periphery of TP-1 sample (periphery grain) was used to 

observe its microstructure evolution. 

3. Results and discussion 

Figure 1 is the grain structure of HPAl, HPAl refined by 0.2% addition of Al-5Ti-1B, and HPAl 

refined by 0.8% addition of Al-5Ti-1B, respectively. The average grain size is about 1000 µm, 500 µm 

and 350 µm for without refinement, 0.2% addition and 0.8% addition of refiner of HPAl. Compared to 

good refinement performance of Al-5Ti-1B refiner to CPAl, obviously, no effective refinement was 

obtained for HPAl even with 0.8% addition of refiner. In this case, very high excess Ti (0.0224wt% Ti 

for 0.8% addition of refiner) and a sufficient number of TiB2 nuclei (four times to 0.2% addition of 
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refiner to HPAl) were added into the melt. The question is why there was no effective grain refinement 

was obtained, even though there were enough potent nucleation sites and very a high value of Q. 

 

 

Figure 1. Grain structure of HPAl (inset is center grain structure), (a) without 

refinement, (b) refined by 0.2% Al-5Ti-1B, (c) refined by 0.8% Al-5Ti-1B. 

 

 It should be noticed that the big difference between CPAl and HPAl is that the CPAl contents 

0.08% Fe, 0.03%Si and 0.006%Ti [15, 16]. The grain refinement of HPAl by 0.8% addition of refiner 

indicates that the value of Q caused by solute Ti does not play dominant role on grain refinement 

process, and excess Ti cannot make TiB2 particles act as active nucleation sites. There should be 

another significant premise nucleation mechanism to make TiB2 particles and solute Ti active.  

 According to the difference of composition between CPAl and HPAl, the impurities added into 

HPAl were 0.08% Fe and/or 0.06% Ti. It can be seen from figure 2 that the center grain size of HPAl 

containing 0.06% Ti refined by 0.2% addition of Al-5Ti-1B was about 450µm and was at the same 

level to HPAl refined by 0.2% addition of refiner. Also, very coarse column periphery grains were 

obtained. In this case, the excess Ti within melt was equal to CPAl refined by 0.2% addition of        

Al-5Ti-1B, its value is 0.0116%. If Q supplied by excess Ti plays important role on crystal growth, 

better grain refinement should be achieved. This demonstrates that the value of Q has very little effect 

on the grain refinement of aluminium. Figure 3 presents the grain size of HPAl containing 0.08% Fe 

refined by 0.2% addition of refiner. Fine equiaxed grains of about 206µm in diameter were obtained at 

the sample center (figure 3a). It should be noticed that fine column grains at the periphery of TP-1 

sample were observed (figure 3b). Compared to the coarse column periphery grains of HPAl refined 

by 0.2% addition of Al-5Ti-1B (figure 1b), the change of periphery grain structure indicates that Fe 

can promote nucleation of TiB2 particles with excess Ti. 

 

 

 The experiment results mentioned above show that Fe has strong influence on the grain structure of 

HPAl after refinement than that of Ti. These testified that Fe plays significant role on the grain 

refinement of aluminium. 

The reciprocal effect of Ti and Fe on the grain refinement of HPAl was shown in figure 4. It can be 

seen that the periphery column structure disappeared completely (figure 4b) and there were very fine 

  

Figure 2. (a) Center grain and (b) periphery 

grain morphology of HPAl containing 0.006% 

Ti refined by 0.2% Al-5Ti-1B 

  

Figure 3. (a) Center grain and (b) periphery 

grain morphology of HPAl containing 0.08% 

Fe refined by 0.2% Al-5Ti-1B 

(a) (b) (c) 

(a) (b) (a)  (b) 
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equiaxed grains at the center of about 153µm in diameter (figure 4a). In view of the coarse grain 

structure for HPAl with 0.2% addition of Al-5Ti-1B, the better grain refinement results of HPAl 

containing Fe and Ti refined by 0.2% addition of refiner verify that the effect of excess Ti on the grain 

refinement is to enhance nucleation efficiency by dendrite melting and multiplication other than to 

promote nucleation potency of TiB2 particles. 

 

 

 

 

 

 

 

 

 

 

 

 

Based on present experiment results, the grain refinement of aluminium should include nucleation, 

dendrite remelting and multiplication and solute Fe plays a significant role on the nucleation process. 

McKay’s [23] observation on TiB2/Al interface showed that Fe and Si were very easily segregated on 

TiB2/Al interface. Combination present results and McKay’s report, the conclusion of the promotion 

of the interface segregation on the potency of TiB2 acted as active nucleation site can be drawn. This is 

why HPAl containing 0.08% Fe can be refined by 0.2% Al-5Ti-1B, while HPAl cannot be refined 

effectively. The periphery grain structure of HPAl containing 0.08% Fe after refinement was a 

convinced proof for our speculation (figure 3b). 

 

 

 

  

 

 

 

 

 

 

 

 

  Careful investigation on the microstructure of Al-5Ti-1B grain refiner shows that TiB2 particles 

were always found on the surface of TiAl3 phase (figure 5). This was attributed to the good orientation 

relationship between TiB2 and TiAl3 [11-13]. Once solidification occurred, TiB2 can act as the 

substrate of TiAl3 phase. When refiner was added into melt aluminium, bulk TiAl3 phase was melt 

quickly [2, 8]. But it does not distributed uniformly within melt due to the restriction effect of TiB2. 

As a result, the Ti atoms were concentrated around TiB2 particles to form many small conglomeration 

zones. During solidification process of refined aluminium, some of TiB2 particles were act as active 

nuclei due to the segregation of Fe, and the other TiB2 particles carried on Ti atoms zones to promote 

the dendrite remelting and multiplication. For HPAl refined by Al-5Ti-1B refiner, there are not enough 

active TiB2 nuclei due to the absence of Fe segregation. This is why 0.2%, 0.8% addition of Al-5Ti-1B 

refiner cannot refine HPAl effectively while 0.2% addition of Al-5Ti-1B has good refinement 

performance on HPAl containing 0.08% Fe. For addition of TiB2 and excess Ti into aluminium 

separately, the Ti atoms conglomeration zones (concentration fluctuations) are still exist within melt, 

but their size is much bigger than that of addition of Al-5Ti-1B, due to the absence of restriction of 

  

Figure 4. (a) Center grain and (b) periphery 

grain morphology of HPAl containing 0.08% 

Fe and 0.006% Ti refined by 0.2%Al-5Ti-1B. 

 

Figure 5.  Microstructure of Al-5Ti-1B. 

(a) (b) 
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TiB2 particle. Then, there is indeed limited effect on the promotion of dendrite remelting and 

multiplication. With prolonging holding time or elevating holding temperature of refined aluminium 

melt, the small conglomeration zones of Ti will be decreased and disappear eventually. As a result, 

atoms of Ti tend to distribute uniformity within melt. This is the reason that the fading mechanism of 

grain refinement occurred at long-holding time and high temperature.  

Compared to microstructure of refined HPAl with Fe and Ti, the effect of elements on the refinement 

process was revealed. Fe can promote the nucleation of TiB2, and Ti can enhance refinement 

performance by the powerful ability of promoting fine dendrite remelting and multiplication. The 

different content of Ti on grain refinement performance of refined HPAl shows that there is a critical 

value for conglomeration zone of Ti atoms to promote the fine dendrite remelting. 

 Using this theory, poisoning effect of Zr, Mn and Cr on the Al-Ti-B refiner can be described 

reasonably. Normally, Zr, Mn and Cr were considered to form intermetallic compound and then to 

weaken the grain refinement by decreasing the Q value. In present study, the value of Q was testified 

that it was not the critical factor to refinement of aluminium. According to present experiment results, 

even with very high value of Q and plenty of TiB2 particles, effective grain refinement did still not 

occur for HPAl. From this point of view, the essence of poisoning was attributed to insufficient active 

TiB2 particles deduced by lack of Fe segregation, in which the formation of compound between Zr, 

Mn, Cr and Fe occurred. If more concentrate of Fe was added into melt, the grain refinement would be 

recovered. It was reported that the higher iron content can reduce the poisoning effect of zirconium 

[24]. This is well agreed with grain refinement mechanism proposed in present study. 

4. Conclusion 
In this investigation, the performance of Fe, Ti and TiB2 on the grain refinement of aluminium was 

studied by employing Al-5Ti-1B refiner. According to the experiments results, Fe plays significant 

role on the grain refinement of aluminium and it can enhance nucleation potency by segregation onto 

TiB2 surface. The grain refinement process should include nucleation, dendrite remelting and 

multiplication. Both of them play an important role on the grain refinement of aluminium. The effect 

of excess Ti was to form many small conglomeration zones and to promote the dendrite remelting and 

multiplication. 
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