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Abstract. While the numerical simulation of macrosegregation is now a common place activity 

efforts can still be enhanced by developing quantitative measures of the results. Here, on 

treating the nodal field of concentration predictions from a macrosegregation simulation as a 

sample from a statistical distribution, we demonstrate how statistical measures can be used in 

verification and validation. The first set of such measures is simply the central moments of the 

distribution, i.e., the mean, the standard deviation, and the skewness; measurements that 

provide quantitative checks of mass balance and grid convergence. In addition, building on 

recently reported work [1], we also demonstrate how to construct and use a cumulative 

distribution function (CDF) of the nodal concentration field; a measure that can be used to 

determine the fraction of the casting volume concentrations less than a specified value. We 

show how the CDF can be used to compare the influence of various process conditions and 

phenomena related to domain size, cooling rate, permeability, and micro-segregation.    

1.  Introduction 

Current macrosegregation simulations are advanced and when coupled with sophisticated graphical 

outputs lead to detailed predictions of the distribution of solute in cast products. Ultimately our 

objective with these simulations is twofold. In the first place we might like to compare differences in 

process settings such as cooling conditions, and geometry. Secondly, we may be interested in 

understanding the basic phenomena underlying the simulations, e.g., microsegregation, and mushy 

region flow behavior. Clearly, graphical output provides an immediate qualitative evaluation of 

changing process settings or model phenomena. But this powerful tool is lacking in obvious 

quantitative measures that can be used in case to case comparisons. One way of obtaining quantitative 

measures is to treat the predicted nodal values of solute concentrations from a macrosegregation 

calculation as a statistical distribution. In this way measures of central moments and derived 

distribution functions [1] can be used as quantitative representations of macrosegregation behavior. 

The objective of this paper is to introduce these measures and, through a number of example 

macrosegregation simulations, show how they can be used to evaluate process settings and 

phenomenological models.  
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2.  Statistical measures  

Usually, the output from macrosegregation simulations essentially provides a list, Ci (i=1, 2,..N) of 

solute concentration values taken from (N) specified discrete points (nodes) in the casting. Often these 

are more conveniently stored as a set of macrosegregation levels Mi= Ci/ C0, where C0 is the initial 

solute concentration in the melt. When this data is treated as a sample from a statistical distribution, 

central moments can be immediately calculated. Each of the first three central moments of such a 

distribution provides useful quantitative measures. 

 

The first moment is the mean, defined as: 
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This will return the average macrosegregation level which can be used as a check on the mass balance 

of the simulation, i.e., if our simulation is correctly conservative we would expect that 1M . The 

second central moment is the sample standard deviation 
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This provides a measure of the spread of the data. Previously introduced as the macrosegregation 

number [2] it provides a basic measure of the level of macrosegregation. The third moment is the 

sample skewness, which based on the SKEW function found in spreadsheet software, can be defined 

as: 
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(3) 

 

This measure tells us how much the solute distribution is biased to the positive or negative side of the 

mean (the initial concentration). For example, a positive value of skewness (g) indicates that positive 

segregation values have a wider range than negative segregated values. 

In addition to measures of central moments we could also construct a distribution function of our 

data. In recent work Voller and Vušanović [1] have proposed a simple way of constructing a so called 

Cumulative Distribution Function (CDF). This involves (i) listing the nodal values Mi in descending 

order, (ii) assigning a rank number j = 1, 2,3, …, N to each item in the list, and then (iii) associating 

with each entry an inverse Weibul number 
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Essentially the value of Fj is the volume of the solidified casting which has a macrosegregation level 

greater than or equal to that of Mj = Cj /C0. The method is best suited to cases where the data acquired 

from experimental or numerical simulations is over a uniform grid. In cases where this is not case, 

e.g., simulation results obtained with an unstructured or cloud grid, care may need to be taken in 

constructing and interpreting the CDF. 
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Voller and Vušanović have used this CDF approach to investigate the grid dependence of macro-

segregation simulations. A result, that when used in conjunction with experimental measurements for 

a Sn-10%Bi alloy [3] suggests that the positive segregated region may have a power-law tail. Thus 

indicating that as numerical or measurement resolution is refined one will, up to the formation of a 

second phase, encounter higher and higher values of solute concentration. Here we will extend the use 

of the (CDF) recently proposed in [1] and demonstrate how it can also be used to evaluate changes in 

process and model conditions. 

3.  A baseline case 

As a baseline case, to compare the effects of process and phenomena conditions, we consider the 

solidification in a side cooled two-dimensional cavity containing an Al-4.5%Cu like alloy, with a fixed 

columnar microstructure initially at the liquidus temperature. The governing equations are the standard 

macrosegregation mixture model of heat, solute, and momentum conservation introduced by Bennon 

and Incropera [4], full details of the equations and solution strategy can be found in [5,6]. We note that 

our principal intention here is not to detail the model and solution used but rather to illustrate how the 

statistical measures, introduced above, can be used to systematically study the effects of process and 

phenomena on macrosegregation, in particular variations in the domain size, cooling conditions, 

microsegregation treatment, and permeability model. The base case consist of a 20mm x 20mm 

domain size cooled by applying a constant heat flux Q=1.0MW/m
2
 on the left vertical side. Key 

factors in the model include (i) the construction of a microsegregation model to determine the nodal 

liquid solute concentration field from the predicted mixture concentration Ci, and (ii) a devise to 

suppress the fluid flow as a nodal solid fraction fi in the mushy region approaches 1 (full 

solidification). In the base model we use a lever rule which assumes, within the micro scale of the 

mushy region (a secondary arm space), complete solute diffusion in both liquid and solid phases. Thus 

allowing us to determine the liquid concentration from a simple mass balance Ci = fkCl + (1-f)Cl. The 

standard model to suppress fluid flow, as full solidification is reached, is to add a Darcy like sink term, 

scaling as ~ (inverse permeability x velocity), to the momentum equation. In the base case, the 

permeability is modeled as K=κ0f
3
/(1-f)

2
, where the constant κ0=1.0x10

-10
m

2
. In this way as we 

approach full solidification f1 the inverse permeability K
-1
, effectively suppressing the flow 

velocity in the mush.  

The first panel in figure 1 shows the predicted final macrosegregation pattern for the base case 

using a grid size of 40x40 control volumes and a time step  t = 2.0x10
-3

sec. The second panel shows 

the CDF in log – log scale, for four different grid sizes. In support of figure 1, table 1 shows the mean, 

standard deviation, and skewness change with grid size. 

 

 
          a)               b) 

         Figure 1. Macrosegregation profile for baseline case (a), and (CDF) for the baseline 

         case with different grid sizes (b). 
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Matching the findings in Voller and Vušanović [1] the main observation to take from figure 1b), is that 

as the grid is refined, the positive segregation region extends to the right and the predicted maximum 

truncation value of (M) increases. Essentially, a finer resolution, be it from simulation or experiments, 

will continue, up to some physical limit (e.g. the appearance of another solid phase), to uncover 

additional volumes with higher concentrations. This behavior is also seen in the values of table 1, 

where both the standard deviation (macrosegregation number) and skewness increase linearly with 

decreasing grid spacing. This suggests that care needs to be taken when increasing the grid size in 

computer models, and at the same time indicates why it is often so difficult to economically arrive at 

grid resolved macro-segregation simulation predictions.  

 

Table 1. Statistical measures of macrosegregation results. 

Grid 

spacing 

(mm) 

Mean 

M  

Standard 

deviation (s) 

Skewness 

(g) 

0.50 1.0 0.05019 3.15733 

0.25 1.0 0.05533 3.74400 

0.2 1.0 0.05634 3.87929 

0.134 1.0 0.05786 4.08245 

 

4.  Applications of (CDF) approach for parametric study of macrosegregation 

To demonstrate how to use the Cumulative Distribution Function (CDF) in a parametric study we 

conduct a number of simulation runs where we change a single process or phenomena setting in our 

base line simulation. The changes are: (1) reductions in the cooling flux Q, (2) an increase in the 

permeability constant (corresponding to an increase in the assumed secondary arm space), and (3) the 

use of a Scheil microsegregation model where a zero solid state solute diffusion is assumed. These 

deviations from the base case are summarized in table 2 and the resulting CDF’s (plotted in both linear 

and log-log scales) are shown in figures 2-4. Note that all runs are done with the relatively coarse grid 

size of (0.5 mm)   

 

Table 2. Variations of process parameter for CDF analysis of macrosegregation results. 

Case 
Domain 

size 
Cooling rate Micro model Permeability 

Baseline case: 20x20mm, Q=1MW/m
2
, Lever, κ0=1.0x10

-10 
m

2
 

 

1.1 20x20mm Q=0.5 MW/m
2
 Lever κ0=1.0x10

-10 
m

2 

1.2 20x20mm Q=0.25 MW/m
2
 Lever κ0=1.0x10

-10 
m

2 

 

2.1 20x20mm Q=1MW/m
2 

Scheil κ0=1.0x10
-10 

m
2 

2.2 20x20mm Q=1MW/m
2 

Lever κ0=1.0x10
-9 

m
2 

2.3 20x20mm Q=1MW/m
2 

Lever κ0=1.0x10
-11 

m
2 

 

With reference to the linear CDF plot (figure 2b) we see that a fast cooling rate, implying a faster 

solidification rate, leads to less segregation; this is indicated by the reduction in the spread of the CDF 

as the cooling rate is increased. In contrast, a comparison of the CDF’s obtained with a Scheil and 

lever microsegregation model (figure 3) indicates that for the majority of the casting, the limit 

microsegregation treatments have little impact on the solute distribution. In the last 5% of the casting, 

however, as clearly indicated in the log-log plot (figure 3a), there is a pronounced difference. This is 

driven by the fact that, in the later stages of solidification, the Scheil model leads to significantly 

higher values of the liquid solute concentration. Finally, as might be expected, changes in the 

4th International Conference on Advances in Solidification Processes (ICASP-4) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 117 (2016) 012062 doi:10.1088/1757-899X/117/1/012062

4



 

 

 

 

 

 

permeability, figure 4, result in the most dramatic changes in the CDF. With a high value, the flow in 

the mushy region is more intense and can continue to quite high solid fractions. The result is a much 

wider solute distribution, terminating with a larger level of macrosegregation M. In contrast, a low 

value effectively cuts the flow in the mushy region providing limited opportunity for 

macrosegregation and a much tighter CDF.   

 

 
       (a)              (b) 

Figure 2. Influence of cooling rate (a) log-log scale, (b) linear scale. 

 

 
(a) (b) 

Figure 3. Influence of microsegregation model (a) log-log scale, (b) linear scale. 

 

 
(a) (b) 

Figure 4. Influence of different permeability in Darcy law (a) log-log scale, (b) linear scale. 
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5.  Remarks and conclusions 
Here we have demonstrated how simple statistical measures can be used to guide us in constructing 

reliable macrosegregation simulations. Even given the accuracy limitations of the grid size and the 

physical shortcomings in the mixture model, these statistical measures, in particular the Cumulative 

Distribution Function (CDF), provide two important insights. The first, supporting the initial work 

presented in Voller and Vušanović [1], is that the power-law tail in the CDF indicates why it is often 

so difficult to grid converge macrosegregation simulation. The second, is that the shape and spread of 

the CDF is extremely sensitive to change in the parameters that control the fluid flow in the mushy 

region. In practice there are many factors that can control the fluid flow in the mushy region, in 

particular coarsening of the arm spaces (leading to a transient permeability) and the movement of solid 

grains (non-fixed microstructure). As a result, although it may be obvious to state, we believe that it is 

in the modeling treatment of the mushy region flow that drives the observed divergence between 

macrosegregation code predictions observed in benchmark studies [2]. Therefore, in moving towards 

simulations that can consistently and faithfully match those seen in experiment or plant, it is key to 

focus on the development of robust physical models of the flow in the mushy region. Use of the 

statistical approaches demonstrated here, in particular the Cumulative Distribution Function [1], will 

be a useful tool in developing and tuning such models. 
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