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Abstract. Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and 

yield strength. This type of inclusion usually accumulates at grain boundaries. Papers 

addressing this topic show the overall impact of both the fraction of so-called white (carbides) 

and black (non-metallic) inclusions on mechanical properties. In the present work we focus on 

the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing 

between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying 

thermodynamic approaches. Moreover, appropriate experiments have been carried out and a 

large number of particles have been studied applying innovative feature analysis with regard to 

shape, size, and composition. Magnesium silicates are predicted at elevated oxygen 

concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of 

solidification. Experiments with three consecutive flow obstacles show that the amount of 

magnesium silicates decrease after each of the three obstacles, whereas the fraction of           

non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in 

halves over the flow path and the number of particles increases accordingly. We point out that 

based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for 

which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All 

results obtained indicate that magnesium silicates are entrapped on mould filling, whereas    

Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. 

Consequently, the only avoidance strategy is setting up optimum retained magnesium content. 

1.  Introduction 

Non-metallic inclusions decrease fatigue strength and yield strength of SGI, since they accumulate 

near grain boundaries. This weakening notch effect in the matrix structure is severe if caused by a 

jagged or worm-like morphology of these inclusions. Papers addressing this topic show the overall 

impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on 

mechanical properties. The cause for the formation of these inclusions and the associated morphology 

is not yet sufficiently known. After the magnesium treatment of the cast iron melt for the production of 

spheroidal graphite iron (SGI) small amounts of oxygen, sulphur, magnesium, and other trace 

elements will remain in the melt. These elements form silicates on the one hand, and on the other hand 

the solubility of these elements in the austenite is usually very low, which causes microsegregation. At 

a sufficiently high concentration of these elements in the residual melt, Mg-bearing precipitates are 

expected. One aim of the present study was to determine the thermodynamic conditions under which 

such inclusions occur. Furthermore, two hypotheses were followed: the inclusion hypothesis after 

which such inclusions form before or during mold filling, and the precipitation hypothesis that         

non-metallic precipitations occur towards the end of solidification in the residual melt areas. 

Supplementary experiments were conducted to support these theses, or to refute them. 

4th International Conference on Advances in Solidification Processes (ICASP-4) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 117 (2016) 012068 doi:10.1088/1757-899X/117/1/012068

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

2.  State of the art 

Sofue et al. [1] investigated the influence of grain size, graphite shape, amount of non-metallic 

inclusions, matrix structure and matrix hardness on the fatigue strength. Their results show that the 

graphite roundness increases steadily with the remaining magnesium content, but also the number of 

non-metallic inclusions. The weakening of the grain boundaries through non-metallic inclusions 

exceeds the effect of the spheroid roundness at about 0.6 wt.- % retained magnesium. Beyond this 

point, elongation and fatigue strength decrease again. Sofue et al. created rules for the production of 

high quality SGI with improved fatigue strength on the basis of their results. They divided               

non-metallic inclusions into white (Ti, Cr carbides) and black Mg-bearing inclusions. They noted that 

the detailed composition of these inclusions has not been adequately characterized. Using electrolytic 

etching and EDX, Hiroshi et al. [2] investigated the three-dimensional shape and composition of 

various inclusions, thereby distinguishing titanium phosphides, Ti (C, N), and non-metallic inclusions 

from the Mg-Al-Si-O and Ti-C-Si-P-S systems. In their work with high silicon cast iron, Lin et al. [3] 

pointed out, that the presence of magnesium inclusions initiates cracks at the cell boundaries under 

cyclic load. 

Thermodynamic calculations on the phase structure of steel materials are state of the art for many 

applications [4] and [5]. In optimization of cast iron materials, however, such a methodology is still 

the exception [6]. The software Thermo-Calc [7] or FactSage [8] are capable of performing 

thermodynamic calculations with multicomponent systems. From the thermodynamic data, such as 

enthalpy, entropy, and heat capacity, the solidification behaviour can also be derived [7]. With this 

method, effects of individual elements on the amount of non-metallic inclusions depending on the 

temperature were determined [9]. The main kinetic factors influencing cell distances based on the 

nucleation or diffusion in the austenite shell cannot be calculated with thermodynamic methods alone. 

This can only be achieved by means of kinetic models such as the microsegregation model of Pustal et 

al. [10]. The continued segregation of the alloying elements on the basis of thermodynamic and 

mobility data and the formation of related precipitates is numerically calculated. In this model 

simulation of the solidification and diffusion occurs along an axis that reflects a characteristic length, 

depending on the assumed morphology. In dendritic growth this length corresponds to half the 

dendrite arm spacing. In a eutectic cell, this axis corresponds to the half distance between the graphite 

nuclei. The species transport problem of all alloying elements can be solved in several solid phases, 

and for the thermodynamic equilibrium calculations at the phase boundary, the tq-interface of Thermo-

Calc [7] is used. The model takes into account the mobility of the elements as well as their interaction 

during segregation. For example, up-hill diffusion of carbon can be predicted. These effects influence 

the solidification behavior of SGI considerably. 

  

  

Figure 1. Quadruple mold with arrangement of three flow 

obstacles in each of the four arms (left) and cylindrical 

obstacle geometry (right). 
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3.  Work carried out 

 

3.1.  Casting 

To quantify the influence of mold filling on the amount and type of non-metallic inclusions, an 

experiment was set up, that allows generating such inclusions in flow obstacles. The mold in figure 1, 

designated as “quadrupel test”, has been successfully used for the selective generation of oxide 

inclusions in magnesium casting. 

The modular mold is assembled of individual cold-box cores, the down sprue through which the 

pouring height can be varied, the gating element at the base, and four horizontal arms, which represent 

the actual casting. In each arm up to three flow obstacles can be inserted at regular intervals. During 

mold filling eddies form in the flow shadow of the flow obstacle. These in turn lead to increased 

contact between melt and atmosphere, so that an increased possibility for the formation of oxides 

exists, where appropriate reactants are present. If turbulent mold filling has significant influence on the 

formation of Mg inclusions, then their amount should increase in the casting behind the obstacles 

along the flow path. 

We further subdivided the inclusions in Si-bearing and non-Si-bearing Mg inclusions. Key research 

questions of casting trials were whether an increase of Mg-bearing inclusions along the flow path is 

taking place, and whether the proportion of finely divided non-Si-bearing inclusion behaves in the 

same manner as the amount of Si-bearing particles. If the amounts of non-Si-bearing inclusions along 

the flow path develop in the same or similar manner as the amounts of Si-bearing inclusions, then this 

would be an indication of an influence of the mold filling conditions on non-Si-bearing particle 

formation. But, if the non-Si-bearing inclusions are equally distributed, while magnesium silicates 

increase, then the influence of mold filling on the non-Si-bearing inclusions is secondary and           

non-Si-bearing inclusions are precipitates. For this purpose, a sample was taken after each flow 

obstacle, ground, and polished for analysis. 

 

3.2.  Analysis 

For identification of inclusions or precipitates, scanning electron microscopy (SEM) was used. Due to 

the small size of the particles a so-called feature analysis was applied instead of conventional image 

analysis. In this method, image analysis is conducted on the basis of automatically generated SEM 

images over a large sample area. Subsequently, all characteristic particles are automatically checked 

with EDX measurement. In this way, a record was created for each particle to the entire measurement 

area of about 0.38 mm² containing size, composition, shape, and surface area. Because of this highly 

time-consuming procedure, this process could be performed for only three samples at one arm.  

 

3.3.  Thermodynamic / thermodynamic-kinetic simulations 

For the thermodynamic calculations the software FactSage [8] along with the databases FStel and 

Ftoxid [8] were applied. Calculations were performed at thermodynamic equilibrium and according to 

the Gulliver-Scheil model, that is, no diffusion in the solid state, infinite rapid diffusion in the liquid 

phase. As a starting point for variations of oxygen the composition C3.45 Si2.19 Mn0.14 P0.018 

S0.006 Mg0.028 wt.-% was selected. The oxygen content was varied between 19 ppm and 0.1 wt.-% 

and the effect of the presence or absence of sulphur in the melt during the development of Mg-bearing 

precipitates was taken into account. The results of this study are given in Section 4.2. 

Applying the microsegregation software microphase along with the database Iron-01c, both 

described in Pustal et al. [10], simulations were performed with the initial compositions Fe C3.62 

Si2.4 Mn0.08 wt.-% and variation of the retained Mg: 0.02, 0.04, 0.08 wt.-%. In each such case the 

resulting residual melt concentration at 1 wt.-% liquid was calculated as: C3.96 Mn0.29 Si1.21 wt.-% 

and Mg: 0.21, 0.43, 0.87 wt.-%. These concentrations represent the conditions in the intercellular 

residual melt areas where non-metallic inclusions were found. These conditions were then applied in 

FactSage as initial concentration for calculating compounds at thermodynamic equilibrium. The 
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calculations were carried out at temperatures between 1000 °C and 1400 °C with the addition of 19 

ppm of oxygen and the final results of this procedure are shown in Section 4.2.  

4.  Results 

 

4.1.  Results of analysis 

Feature analysis was conducted at three samples taken behind each of the three flow obstacles of one 

arm, to determine the statistical change in the number of particles, the particle size, and the area ratio 

for the different kinds of particles bearing Mg with and without Si. Figure 2 (a) shows that both types 

of particles are present in roughly equal amounts in the microstructure. The area ratio of all              

Mg-bearing particles decreases after each flow obstacle. This is mainly due to the decrease of 

magnesium silicates, since the amount of Mg (O, C, S, P, N)-bearing particles without Si remains 

approximately constant. The discrepancies at sample position 2 are due to porosity at this location 

which impacts the acquisition of the values measured. When neglecting sample position 2, the drawn 

trend of decrease or increase remains. Figure 2 (b) shows that the particles behind the first flow 

obstacle are large with an average of about 1.5 m
2
, whereas behind the third module these particles 

are small; the mean area is only about 0.65 m
2
. Along with the particle size, the particle density      

(n-particles/100m
2
) decreases. The form factor decreases strongly, that is, the particle roundness 

improved considerably over the sample position. This means, that after the first flow obstacle a few 

large and rather jagged particles occur and behind the last module, there are many more small rounded 

particles. In a further differentiation, it was found that the non-Si-bearing particles decrease in size 

more noticeably, whereas the form factor improvement is more pronounced in the Si-bearing particles. 

It can be concluded that the non-Si-bearing particles due to their size and disadvantagous shape may 

impact the mechanical properties more than the Si-bearing inclusions. 

 

   
Figure 2. Evaluation of feature analysis with respect to the characteristics of Mg-bearing particles 

with and without Si along the sample arm.  

 

4.2.  Results of simulations 

The results of the thermodynamic calculations in figure 3 show that for cast-iron relevant temperatures 

MgO or MgS may form directly, as soon as Mg, O, and S are in the melt or at the free surface. The 

amounts of MgO at about 1780 °C and MgS at about 1700 °C arise due to the assumed oxygen or 

sulphur content of the melt. If the locally available oxygen and sulphur are depleted by reaction with 

magnesium, further reaction products such as Mg2C3 can occur at lower temperatures. A further study 

varying the oxygen content shows that in the multi-component system Fe-C-Mg-Si-O, the oxygen 

content determines which magnesium compounds are stable before solidification starts. At a 

temperature of 1250 °C and oxygen content up to 0.03 wt.-% in the full equilibrium liquid magnesium 

and magnesium oxides are expected. 
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Figure 3. Weight fractions of MgO and MgS calculated with FactSage (a) and of Mg-bearing phases 

based the composition given in Section 3.1 without Mn and P (b). 

 

The microsegregation simulation showed a significant enrichment of magnesium in the melt on 

solidification. Calculations were performed based on the same melt concentration varying the retained 

magnesium content: 0.02, 0.04, 0.08 wt.-%. These calculations resulted in the following 

concentrations at 1 wt.-% liquid phase: Fe C3.96 Si1.2 Mn0.29 and Mg 0.21, 0.43, 0.87 wt.-% 

respectively. 

With these concentrations subsequent equilibrium calculations with FactSage [8] were performed. 

The results of these calculations with respect to the formation of MgO and Mg2C3 are shown in     

figure 4. After the residual oxygen is consumed, Mg2C3 may form at the given composition at about 

1260°C. The amount of Mg2C3 scales linearly with the concentration of the residual liquid, which the 

results of Sofue et al. [1] confirm. In summary, the formation of silicate inclusions is to be expected at 

higher oxygen concentrations such as surface contact, and at lower oxygen concentrations MgO, MgS, 

or Mg2C3 can be formed. This does not exclude the formation of complex compounds that were not 

included in the databases or due to other reactants such as P, S, Ca, Ce. 

 

 

Figure 4. FactSage calculations with the 

databases Iron-01c [10] and FToxid [8]. 

Phase fractions for varying magnesium 

concentrations of the residual liquid: 0.21, 

0.43, 0.87 wt.-%, and 19 ppm oxygen. The 

initial retained magnesium content of the 

melt was 0.02, 0.04, and 0.08 wt.-%. 

 

5.  Summary and conclusions 

The thermodynamic results indicate that a reaction of magnesium and oxygen already takes place 

above the liquidus temperature leading to the formation of MgO and, at higher concentrations of 

oxygen, also to the formation of magnesium silicates. Smaller magnesium silicates can thus arise, for 

example during mold filling in surface contact and then pass into the cast component. The remaining 

magnesium segregates and reacts at a sufficient concentration with the segregating elements oxygen 

and sulphur, until they are fully consumed. According to the calculations Mg2C3 is following. The 
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influence of the oxygen concentration on the reaction equilibria indicates that during the Mg treatment 

at first magnesium silicates form. 

The amount of the non-Si-bearing precipitates remained approximately constant in each sample, 

whereas particle number and size varied greatly. This observation supports the precipitation 

hypotheses for non-Si-bearing Mg inclusions. All results and analyses of the present study suggest that 

non-metallic inclusions, such as Mg (O, C, S, N, P) only form during solidification by segregation as 

precipitates. Astonishingly, the amount of Si-bearing inclusions decreased. This observation 

contradicts the inclusion hypotheses because more surface contact due to vortices developing behind 

the three flow obstacles does not increase the amount of magnesium silicates as expected. This means 

that no significant amount of Si-bearing particles is formed on mold filling; these particles must be 

pre-existing. The pre-existing particles may be trapped in the flow shadow of the flow obstacles and 

decrease therefore. The overall decrease in the size and proportion of Mg-bearing particles as well as 

the improvement of the form factor lead to the conclusion that vortex formation may have a positive 

impact on fatigue strength. This has to be further investigated. 

The literature review shows that all particles near the grain boundaries weaken the grain boundaries 

under stress, even with rounded shape, which is why these are undesirable together with carbides also 

caused by segregation. The avoidance of Mg-bearing precipitates is possible in SGI only in so far as 

that the optimal retained Mg content of 0.06 wt.-% should not be exceeded. At higher retained Mg 

contents, the effect of grain boundaries weakened by non-metallic precipitates outweighs the effect of 

improved particle roundness. Sofue et al. [1] show the relationships between retained Mg content, 

nonmetallic inclusions, graphite mold and matrix hardness on the fatigue strength. On this basis, they 

developed criteria for optimal properties. 
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