
 
 
 
 
 
 

Tool breakage detection from 2D workpiece profile using 
vision method 

W K Lee, M M Ratnam1 and Z A Ahmad2 

1School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, 
Penang, Malaysia. 
2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, , 
14300 Nibong Tebal, Penang, Malaysia. 
 

1Email: mmaran@usm.my  

Abstract. In-process tool breakage monitoring can significantly save cost and prevent damages 
to machine tool. In this paper, a machine vision approach was employed to detect the tool 
fracture in commercial aluminium oxide ceramic cutting tool during turning of AISI 52100 
hardened steel. The contour of the workpiece profile was captured with the aid of backlighting 
during turning using a high-resolution DSLR camera with a shutter speed of 1/4000 s. The 
surface profile of the workpiece was extracted to sub-pixel accuracy using the invariant 
moment method. The effect of fracture in ceramic cutting tools on the surface profile signature 
of the machined workpiece using autocorrelation was studied. Fracture in the aluminum oxide 
ceramic tool was found to cause the peaks of autocorrelation function of the workpiece profile 
to decrease rapidly as the lag distance increased. The envelope of the peaks of the 
autocorrelation function was observed to deviate significantly from one another at different 
workpiece angles when the tool has fractured due to the continuous fracture of ceramic cutting 
insert during machining. 

1.  Introduction 
Aluminium oxide based ceramic cutting tools has been widely used in hard turning, such as cast iron, 
martensitic stainless steel and high-temperature alloys because of their high hot-hardness and high 
wear resistance. However, the main drawbacks of ceramic tool material are due to their low fracture 
toughness and poor thermal shock resistance, thus resulting in premature tool failure by chipping or 
catastrophic failure by fracture instead of gradual wear [1]. Therefore, in-process detection of sudden 
fracture in ceramic cutting tools is very important for maintaining the stability of the machining 
process, avoiding the excessive damage on machine tool as well as preventing the deterioration in 
surface quality and dimensional accuracy of the machined parts. 

Tool wear monitoring can be generally divided into two types: direct and indirect method. Direct 
tool condition monitoring is usually performed by means of optical such as toolmaker’s microscope, 
scanning electron microscope, confocal microscope and white light interferometers [2-4] which can be 
effectively applied to quantify tool wear and tool fracture. But these methods are only feasible for 
offline evaluation because the cutting tool has to be dismantled from the machine tool, thereby 
increasing the machine downtime. Past works have been conducted for in-cycle wear measurement on 
cutting tools using CCD camera without the need to dismantle the cutting insert from the tool holder 
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[5-7]. But these methods cannot be applied in-process because the chips and coolant that interfere 
during machining are the major obstacle for in-process tool condition monitoring. As a result, indirect 
tool wear monitoring based on measurable signal features such as acoustic emission, vibration, cutting 
force has gained interest among researchers. It is mainly due to the indirect methods able to monitor 
the tool condition online which allows uninterrupted machining. These signal features are extracted 
through signal processing methods such as time domain, frequency domain, time-frequency domain 
and wavelet in order to obtain an accurate representation of the tool’s state. A good review of these 
methods is provided by Byrne et al [8] and Rehorn et al. [9]. Cutting force is the one of the most 
popular sensor signals used for detecting tool breakage in turning. Cakir and Isik [10] found that the 
cutting force increased as tool wear increased. When cutting force increases above the preset threshold 
and drops suddenly, this indicated that the cutting tool has fractured because there is a total lost of 
contact between the cutting tool and the workpiece. However, the chipping can also cause the failure 
of a cutting edge without decreasing of cutting force [11]. Numerous studies have also found the 
monitoring of acoustic emission (AE) signal to be an effective approach to detect the tool breakage. A 
stepwise increase of the r.m.s of AE signal was observed after tool has fractured because of the sudden 
increase in the contact area between the workpiece and the fractured cutting tool [12]. However, a 
contradict finding was found in recent work conducted by Neslušan et al. [13]. They reported that 
conventional data processing of AE signal features do not enable the different phases of tool wear to 
be clearly recognised or the detection of tool breakage. 

Tool condition also can be indirectly assessed based on the machined surface by using vision 
method. For example, Kassim et al. [14] and Kassim et al. [15] determined the degree of tool wear by 
analyzing the surface texture of machined captured by CCD camera using different image processing 
method. Their result shows that the worn tool exhibits more irregularities in the texture of machine 
surface compared to the new cutting tool. Liao et al. [16] extracted 3D workpiece surface texture 
parameters from the surface height map of machined workpiece and correlated with the flank wear. 
Dutta et al. [17] studied the relationship between the texture descriptors obtained from grey level co-
occurrence matrix (GLCM) and the average flank wear. The surface texture of machined part showed 
some potential to monitor the wear of cutting tool, however, the reflection images from work piece 
surface is highly dependent on the reflectance of the work piece surfaces and the illumination 
condition of the light source. Inhomogeneous illumination due to improper lighting and interference of 
ambient light can cause redundant information from images. A promising method of wear assessment 
is by using the surface profile of the workpiece. This approach was proposed by Shahabi and Ratnam 
[18] for evaluating the nose wear using a CCD camera equipped with backlighting to capture the 
contour of the workpiece profile. The nose wear was determined by subtracting the workpiece profile 
generated by worn tool from the workpiece profile generated by unworn tool. However, no attempt 
was made to differentiate the chipping or fracture from gradual wear that commonly occur in ceramic 
cutting inserts.  

In this paper, we propose a novel method for in-process tool fracture detection in aluminium oxide 
ceramic cutting insert from 2-D workpiece profile signature using machine vision method. 

 

2.  Experimental setup 

2.1.  Machining condition 
The turning were carried on a Pinocho S90 conventional lathe machine under dry cutting condition. 
Commercially available aluminum oxide based ceramic insert with added zirconia (CNGA 
120408T02520 CC620, Sandvik Coromant Ltd., Sweden) was used as the cutting tools. A workpiece 
made of AISI 52100 hardened steel was used (C: 0.98-1.1%, Mn: 0.25-0.45%, P: 0.025%, S:0025% 
and Cr: 1.3-1.6%). The tool holder used for the turning was DCLNR 2020M from Sandvik Coromant, 
Sweden. The turning operation was performed under the following cutting parameters: spindle 
rotational speed 950 rpm, feed rate 0.4 mm/rev and depth-of-cut 0.5 mm. 
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Figure 1. Schematic of image acquisition configuration 
 

2.2.  Image acquisition of workpiece profile and cutting insert 
The images of the edge of workpiece were captured using a DSLR camera (model: Canon EOS 700D) 
fitted with Canon EF 100mm macro lens with aids of a uniform diffused backlighting illumination 
during the turning operation. Figure 1 shows the schematic of experiment setup. Uniform diffused 
backlighting illumination was obtained by using a high-frequency fluorescent light (Edmund Optics 
Pte. Ltd., Singapore) to capture a silhouette of the work piece. Shutter speed of 1/4000 s was used to 
freeze the motion of the rotating workpiece. The images of workpiece were captured from a remote 
software installed in a computer. The spindle rotation angle between each image is approximately 60o. 
Observation on the cutting tool tip after each pass of machining was performed by using a scanning 
electron microscope (Hitachi TM1000 SEM) in order to observe the effect of the cutting tool condition 
on the autocorrelation. 

2.3.  Scaling factor determination and distortion assessment 
The horizontal (x-direction) and vertical (y-direction) x- and y-scaling factors for converting the image 
coordinates in pixels to real-world coordinates in metric units were determined using standard 
Mitutoyo pin gages of known diameter (i.e. 0.25 mm, 0.725 mm and 0.895 mm). The x- and y- scaling 
factors were found to be fx = 4.3179 µm/pixel and fy = 4.2271 µm/pixel, respectively. The distortion in 
the image captured by the DSLR camera was evaluated by using a Ronchi ruling (50 lines/inch, 
Edmund Optics Pte. Ltd., Singapore). The image of the ruling was captured vertically and horizontally 
relative to the image frame where the Ronchi ruling was placed at the same level as the edge of the 
workpiece. The distortion in the image was determined by using the distances between selected points 
on the ruling. The maximum deviations in the x- and y- directions were found to be only 5 pixels 
(0.15%) and 3 pixels (0.06%), respectively. Therefore, the distortion effect in the image can be 
neglected. 

2.4.  Workpiece profile extraction using subpixel edge location and autocorrelation analysis 
An algorithm was developed to extract the workpiece profile in sub-pixel accuracy. Firstly, the 
captured image was read as a RGB image and converted to grayscale image using the Matlab 
command ‘rgb2gray’. The grayscale image is composed of pixel intensity values that range from 0 
(black) to 255 (white).After that, the image was further pre-processed to remove noise by using wiener 
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filtering. The invariant moment method proposed by Tabatabai and Mitchell [19] was applied in this 
study to locate the edge of workpiece profile to sub-pixel accuracy. The contour of surface roughness 
profile was detected using orthogonal scanning. Figure 2 shows the scanning starts from the first point 
of the first row to locate the sub-pixel profile on the workpiece profile. This process is repeated to 
detect all the sub-pixels that lie on the profile thus producing the contour of surface roughness. 
Because the profile of the workpiece is in pixel units, therefore the roughness profile is converted from 
pixel unit to micrometer by multiplying the scaling factor fx in order to change the pixel value to 
micrometer. 

 
 

   

 

 

 

 

 

 
 
Figure 2. Orthogonal scanning 
with sub pixel accuracy 

 

 

The extracted profile was analysed using the autocorrelation method to detect onset tool fracture by 
detecting the presence of the random noise buried in any periodic surface roughness profile. This was 
done by comparing the workpiece profile, y(x) with a replica of itself whereby the replica is shifted by 
a lag distance (τ). The autocorrelation function is the integral of the shifted and the un-shifted surface 
profile evaluated over the length of the profile, L and is given in Eq. (1) [20].  

 
(1) 

 
 

For discrete profile data the autocorrelation function is defined as in Eq. (2) 
 

(2) 

 
where m is an integer, N is total number of sample points on the workpiece profile,)(iy is the surface 

profile at position τ∆i and )( miy −  is the surface profile at position  τ∆− )( mi , i.e. at m sampling 

intervals earlier. The autocorrelation function is normalized by dividing)(τA by the square of root-
mean-square roughness (Rq). The root-mean-square roughness is defined as the root-mean-square 
average of the workpiece profile ( )iy  calculated from the mean line and is expressed in Eq. (3). 

 
 

(3) 

  

3.  Results and Discussion 
Figures 3(a)-(d) show the peaks of the autocorrelation function against the lag distance at different 
rotational angles of the workpiece. From the Figure 3(a), it can be noticed that when cutting tool is 
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new, the envelope of the peaks of autocorrelation function decreased gradually at the beginning of 
machining. The envelope of the peak of autocorrelation function are almost the identical at different 
rotation angles. This is because the cutting tool still new and only some abrasion grooves are observed 
on the flank face of the cutting insert which is mainly due to the tool-workpiece abrasion in the early 
machining as shown in Figure 4(a). However, Figure 3(b) shows that the peak of autocorrelation 
decreased rapidly between lag distances of 0 mm to 8 mm at the cutting time interval between 11.1 s 
to 16.5 s. After that, the envelope of the peak of autocorrelation function for workpiece profile 
decreased irregular at different rotational angles and have significant deviation from one to another as 
illustrated in Figure 3(c) and Figure 3(d). This is because fracture appeared on the cutting edge of 
aluminum oxide ceramic inserts after machining time interval of 16.5 s as seen in Figure 4(b). 

 

    
0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag Distance (mm)

A
ut

oc
or

re
la

tio
n

 

 

0°
60°
120°
180°
240°
300°

 
0 5 10 15 20 25

-0.5

0

0.5

1

Lag Distance (mm)

A
ut

oc
or

re
la

tio
n

 

 

0°
60°
120°
180°
240°
300°

            

     
0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag Distance (mm)

A
ut

oc
or

re
la

tio
n

 

 

0°
60°
120°
180°
240°
300°

 
0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag Distance (mm)

A
ut

oc
or

re
la

tio
n

 

 

0°
60°
120°
180°
240°
300°

 
Figure 3. Peak of the autocorrelation plot at cutting time interval (a) 0-5.5s; (b) 11.1-6.5 s; (c) 16.6 -

22.0 s and (d) 22.1-27.5 s 
 

 

      
Figure 4. SEM micrograph of aluminum oxide ceramic cutting insert (a) before fracture (b) after 
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The peaks of the autocorrelation function for a workpiece profile generated from an unworn or 
progressively worn cutting tool decreases gradually as a function of lag distance and are almost 
identical at different rotational angles as shown in Figure 3(a). This is because of the uniform and 
repeatable profile shows good replication of the workpiece profiles as the lag distance increased when 
machining with un-fractured cutting tool. It can be seen in Figure 5, the ceramic cutting insert 
generated a periodic profile with almost constant wavelength along the workpiece. The peak-to-valley 
height of the surface roughness profile was approximately constant at various rotation angles. 
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Figure 5. Extracted surface roughness profile from 2D workpiece images at different rotational angles 
(a) 0o, (b)120o, (c) 240o, (d) 300o in cutting time interval of 0-5.5 s 

 
When cutting tool has fractured, a sharp decrease and a significant deviation in the peaks of the 

autocorrelation function for workpiece profile at different rotational angles was observed in Figure 
3(c)-(d). This is mainly due to abrupt changes in the surface profile caused by fractured cutting tool 
and continuous failure by chipping of the cutting tool. When tool has fractured, the surface profiles do 
not repeat periodically compared to the profiles at the initial cutting stages which shown in Figure 6. 
The peak-to-valley heights of the surface roughness profile also change irregularly. When tool fracture 
has occurred, wider tool-workpiece contact edge area is formed and it causes the cutting force to 
increase. This excites the tool-workpiece to vibrate during machining [21, 22]. Consequently, 
vibration between fractured tool and workpiece caused unstable cutting in the tool movement with 
respect to the workpiece. Boryczko [23] reported that unstable of tool movement results in the non-
uniform distribution of height of irregularities and displacement of wavelength in the feed direction on 
the workpiece profiles. This differ from the theoretical workpiece profiles to a various extent due to 
the complex character. 
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Figure 6. Extracted surface roughness profile from 2D workpiece images at different rotational angles 

(a) 0o, (b)120o, (c) 240o, (d) 300o in cutting time interval of 11.1-16.5 

 

4.  Conclusion 
An in-process tool fracture detection system using vision method is proposed to detect the fracture of 
ceramic tools in turning based on the workpiece profile signature. The workpiece profile with sub-
pixel accuracy was extracted and the autocorrelation function was used to investigate the effects of 
tool fracture on the signature of workpiece profile. The results show that the peaks of autocorrelation 
function of the workpiece profile generated by aluminum oxide ceramic cutting insert decreases 
rapidly as the lag distance increased when tool has fractured. In addition, the envelope of the peaks of 
the autocorrelation function was found to deviate significantly from one another at different angles 
after the tool has fractured. 
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