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Abstract. In the present work the importance of 3D and 4D microstructure analyses are shown. 
To that aim, we study polycrystalline grain microstructures obtained by grain growth under 
grain boundary, triple line and quadruple point control. The microstructures themselves are 
obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic 
and thermodynamic parameters affecting grain growth than can be realized experimentally. In 
extensive simulation studies we find by 3D respectively 4D microstructure analyses that 
metrical and topological properties of the microstructures depend strongly on the 
microstructural feature controlling the growth kinetics. However, the differences between the 
growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a 
differentiation of the controlling grain feature near impossible. 
 
 

1. Introduction 
Today there still exist many gaps in our fundamental understanding of polycrystalline 
microstructures and in predicting their behavioral changes due to recrystallisation and grain 
growth. Closing this gap is of utmost importance since the grain size of a material determines 
its properties. Common stereological 2D investigations [1], e.g., using the mean linear 
intercept method, yield information on the average grain size, but under certain assumptions 
regarding the morphology of grains. Hence, only the 3D data provide the necessary metrical 
and topological properties of polycrystals. To that aim, in recent years much effort has been 
put into the global task to develop new, advanced materials, which has led to new 
characterization techniques enabling materials scientists and engineers to analyze bulk 
materials and thin films in 3D and 4D by X-rays, electrons, and neutrons with high 
resolutions in real time [2].  

An analysis of grain microstructures by means of focused ion beam (FIB) tomography 
allows the creation of serial sections in an automated manner. After reconstruction the 
shapes and sizes of individual grains in the network can be described (compare, e.g., [3]). The 
combination of a focused ion beam and scanning electron microscope with the aim of a 
tomographic orientation analysis is already developed for about 10 years, but the use in the 
nanocrystalline grain size range, where the grain boundary junction can control the 
microstructural evolution, is not trivial as it leads the 3D tomographic Electron 
Backscattering Diffraction method (3D EBSD)  method in conjunction with FIB sectioning to 
their resolution limit concerning the determination of the local orientation [4]. Then again, 
while recently the spatial resolution in 3D for the tomographic EBSD was about 50×50×50 
nm3 [5], today resolutions well below 50 nm (see [3]) can be achieved using low-voltage 
methods. For example Balach et al. [6] succeeded in generating 10 nm thin slices in FIB–
SEM tomography experiments. 

Experiments in nanocrystalline iron [7] have shown that microstructures with an 
average grain radius of well below 100 nm show anomalous behavior (e.g., a linear average 
growth law). Hence, such microstructures are important to investigate more closely. Using 
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mesoscopic computer simulations [8] and analytic mean-field theories [9] it has been found 
that such behavior can be associated with triple junction drag leading among other things to 
a very strong increase in small grains. With an average grain size of less than 100 nm as in 
the experiments this yields a high number of small grains with radii as small as 10 nm. These 
can, however, not be portrayed with the resolution necessary to describe their morphology 
correctly. Hence, for such nanocrystalline grain microstructures we still might have to use 
stereological 2D investigations. 

In the present work we study polycrystalline grain microstructures obtained by grain 
growth under grain boundary, triple line and quadruple point control. In extensive 
simulation studies we find by 3D respectively 4D microstructure analyses that metrical and 
topological properties of the microstructures depend strongly on the microstructural feature 
controlling the growth kinetics. Those differences between the growth kinetics become 
blurred when we look at classical 2D sections of the 3D ensembles making a differentiation of 
the controlling grain feature very difficult. 
 
2. Grain growth under grain boundary junction control 
Unlike conventional materials, metals and alloys of nanocrystalline size have quite different 
mechanical properties like high values of hardness, yield and fracture strength and 
superplastic behaviour at low temperatures implying a size-effect. They show stable grain 
sizes even up to relatively high temperatures and linear or even exponential growth kinetics 
in clear contradiction to parabolic normal grain growth [7, 10]. Such investigations of the 
stability of nanocrystalline materials during grain growth are, of course, of intense 
technological interest because an increase in grain size from nm to μm can result in a loss of 
important materials properties making them unusable in applications. Already in 1997 
Malow and Koch [11] summarised significant works concerning the stabilization of 
nanocrystalline grain structures in many materials and the number of factors influencing the 
grain boundary mobility in nanocrystalline alloys, like grain boundary segregation, solute 
drag, pore drag, second phase (Zener) drag and chemical ordering. A universal explanation 
has not been found yet, but the discussion is still on. 

In particular, Gottstein and Shvindlerman [12-14] proposed that grain growth can be 
controlled by grain boundary junction mobility. The established structures are rather stable, 
in particular, for ultra-fine grained and nanocrystalline materials. Streitenberger and Zöllner 
[9, 15] considered grain growth as a dissipative process driven by the reduction of Gibbs free 
interface and junction energy. A general grain evolution equation has been derived 
separating into nine types of growth kinetics. The corresponding self-similar grain size 
distributions were in agreement with first results from modified MC simulations considering 
size effects in triple and quadruple junction limited grain growth. Details on the simulation 
method as used in the present work can be found in [8, 16]. 
 
3. Evolution of the average grain size: 3D versus 2D measurements 
If the grain microstructural evolution is controlled solely by the mobility of one particular 
structural feature (grain boundary, triple line or quadruple point) it has been shown [8, 9, 14] 
that the average growth law of the 3D structure follows in each case a unique time law. Under 
grain boundary (gb) control the classical parabolic growth law, tR  , holds (compare Fig. 
1a). Under triple line (tl) control (Fig. 1b) a linear growth law results, while grain growth 
controlled by the quadruple points (qp) yields the exponential increase in annealing time as 
shown in Fig. 1c.  In each case it can be seen that there is also an initial period of time that is 
not described by the respective laws depending on the initial microstructure. In addition, for 
each of the three cases the temporal development of the average grain size calculated from 
2D sections,  tr , is also shown, from which it is evident that the growth laws follow the 
same general behavior as their 3D counterpart, while showing fluctuations that are due to the 
limited number of observed grains in the sections. Hence it seems that the microstructural 
feature controlling grain growth can be deducted from the observation of the growth law in 
its 3D or 2D version. 

17th International Conference on Textures of Materials (ICOTOM 17) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 82 (2015) 012080 doi:10.1088/1757-899X/82/1/012080

2



 
Figure 1. Temporal development of average 3D grain size  tR  and grain size in 2D sections 

 tr  for grain growth under: a – grain boundary control; b – triple line control; c – 
quadruple point control. 
 
However, this is not entirely true as Figure 2 
shows, where the three kinetics (gb control – 
circles; tl control – squares; qp control – 
triangles) are shown again as  tr , only now 
each together with a linear least-squares fit. It is 
evident that due to the limited number of 
measured data points a linear relation gives a 
good representation independent of the 
microstructural feature controlling the growth 
kinetics allowing no conclusions! 
More frequent or longer observations can solve 
this problem, and although this is particularly 
important, it is not always possible to detect 
more observation times, since, e.g., for long time 
annealing the growth kinetics changes for 
example under triple line control from linear to 
parabolic (see [8]) restricting the observation 
range. 

 
Figure 2. Development of average grain 
size in 2D sections for grain growth 
under: gb control (circles), tl control 
(squares), and qp control (triangles). 

In order to allow nevertheless a reliable deduction of the microstructural feature that is in 
control of the growth kinetics, we show in the following that both, the metrical and 
topological properties of the grain network have to be investigated very thoroughly. 
 
4. Grain size distribution in sections and real 
Each of the above growth kinetics of a 3D polycrystal (as presented in Fig. 1) is associated 
with a distinct scaled grain size distribution f(x) [8, 9], where x is defined as grain radius of a 
grain divided by the average radius of the ensemble. This is shown indeed in Figure 3a-c, 
where it can be seen that grain growth under limited triple line mobility with a linear increase 
in the average grain size (Fig. 3b) as well as under a limited quadruple point mobility with 
exponential growth law (Fig. 3c) are characterized by a remarkably high number of small 
grains compared to normal, parabolic grain growth (Fig. 3a). All three types of grain size 
distributions are found to be self-similar (i.e. time-independent) and in agreement with 
theoretical predictions (black lines in Fig. 3a-c; compare [9, 15]). 
Then again, it is well known that sectioning of 3D polycrystals results in deviating grain size 
distributions compared to their 3D counterpart. For normal grain growth the scaled size 
distribution f(y), where y is the scaled grain size of the section, is shifted to smaller grain 
sizes, while the distribution becomes broader and less peaked (Fig. 3d). Similar changes can 
also be observed for triple line controlled grain growth (Fig. 3e) and grain growth under 
quadruple point control (Fig. 3f). However, only the latter is distinctively different from 
normal grain growth allowing clear conclusions regarding the associated exponential growth 
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regime. The differences between the distributions in Figs. 3d and 3e are basically negligible 
giving us nearly no indication, which distribution belongs to parabolic normal grain growth 
and which to linear triple junction controlled growth. The only real difference is the 
maximum grain size: Under grain boundary control we can observe grains as big as 2.5 times 
the average size, whereas under triple junction control grains growth as large as 3.0 times the 
average size giving the distribution (Fig. 3e) a slightly larger tail. 
 

 
Figure 3. Relative grain size distributions: a – 3D normal grain growth; b – 3D triple line 
controlled growth; c – 3D quadruple point controlled growth; d – 2D sections from normal 
grain growth; b – 2D sections from triple line controlled growth; c – 2D sections from 
quadruple point controlled growth. 
 
5. Topological investigations of 2D sections 
In addition to metrical properties, polycrystalline grain boundary networks are also 
characterized by topological properties like the number of faces and edges of the grains. It is 
shown particularly in Figure 4a that the grain size y of the grains in the 2D sections is 
strongly correlated to the number of edges. 
 

 
Figure 4. Topological properties of the grain networks: a – Relative grain size versus number 
of edges (averaged y-values for each edge class); b – Distribution of number of edges. 
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While it has been shown previously in [8] that the number of faces as a function of the grain 
size of the 3D microstructures allows a clear deduction of the microstructural feature that is 
in control of the growth kinetics, Fig. 4a shows that the 2D sections show virtually no 
differences for small and average grains. Only for large grains with many faces the triple and 
quadruple junction controlled kinetics differ significantly from normal grain growth. Then 
again there exist only very few of such large grains as the distributions of the number of edges 
show in Fig. 4b. In contrast the latter also illustrate the strong increase in the number of 
grains with few faces. 
 
 
All in all, it can be concluded that while the metrical and topological properties of the 3D 
polycrystalline grain structures depend strongly on the microstructural feature controlling 
the growth kinetics (see, e.g., [8]), it is shown in the present work that those differences 
between the three growth kinetics become blurred when we look at classical 2D sections of 
the 3D ensembles. In particular, we have shown that due to a limited number of measured 
annealing times the average growth law can be described by a linear relation independent of 
the microstructural feature controlling the growth kinetics, which is in strong contrast to the 
3D growth laws. Only from a combined observation of metrical and topological properties of 
the grain networks a reliable deduction of the microstructural feature that is in control of the 
growth kinetics can be drawn. 
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