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Abstract.  Based on the rotational symmetry of the principal axes of X[100], Y[010] and Z[001] ,72 possible 

combinations of the five slips on {110} planes based on Taylor’s formidable restriction rule of the five slips are 

calculated among three kinds of intersections of two {110} planes on 〈111〉 direction in bcc metal. Crystal 

rotation is carried out by only one solution among the 72 by the minimum total slip at every strain and simulates 

properly lengthy of accumulated researcher’s experimental results such as the three stable orientations of bcc 

metal in rolling {112}〈110〉, {11 11 8}〈4 4 11〉 and {100}〈011〉.  

1. Introduction

The pencil glide theory combining {110}, {112} and {123} planes with common direction 〈111〉 gave a very clear 

account of prediction about crystal rotation of body-centered-cubic (bcc) metal.
1-4)  

Barrett et al found that high silicon steel 

slips by only {110}〈111〉 and is less ductile than mild steel. 
5)  

But they also reported in other experiment that the high 

silicon steel forms finally almost same cold rolling textures as those of low carbon mild steel, although the latter are 

supposed to have been formed by the pencil glide. 
6)  

This led directly to a motivation in this study to investigate whether 

crystal rotation could take place by only slip on {110} plane on direction 〈111〉 in bcc metal.  

2. Model

The principal axes of X[100], Y[010] and Z[001] are perpendicular to each other as the three orbits of {±𝑋}, {±𝑌}  and 

{±𝑍} by a rotational symmetry of mathematical group theory in such way that component X is not related to Y or Z one 

another whichever.
7)
 There is a conservation quantity in the symmetry.

8)
  For example, a small ball at the top of Mexican 

hat may drop down on the bottom everywhere equally and symmetrically within 360°around the top due to existence of 

potential energy of the ball as a conservation quantity. Once the hat inclined, the ball would lose both the quantity and 

symmetry. As Taylor proved, crystal rotates so that slips occurs associating themselves with the minimum total slip 

amount
9)
. The minimum total slip amount in crystal by Taylor corresponds to the conservation quantity in the rotational 

symmetry of cubic crystal.   

There are three kinds of {110} planes having a common glide axis 〈111〉 in bcc crystal such as those illustrated on 

Fig.1 in case around Z[001] axis.  

Fig.1  Three kinds of {110} planes composed of {110}, {101} and {011} ones around the principal Z[001] axis with a 

common slip direction 〈111〉 in bcc crystal. 

Calculation method is exemplified as follows. 

Firstly, an intersection of two kinds of {110} planes from the three ones composed of {110}, {101} and {011} as 

illustrated on Fig.1 is chosen. As example, an intersection between {101} and {011} in Fig.1 is chosen and shears on 

{101} group planes on four 〈111〉 directions in case around Z[001] axis are named by turns dX1, dX2, dX3 and dX4 and 
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those on {011} group planes are done dY1, dY2,  dY3 and dY4 correspondently as shown in Fig.2. These are 

geometrically correlated to strain components dε11, dε22, dε33, dε12, dε13 and dε23 and crystal rotation dφ1, dφ2 

and dφ3 around the principal axes X, Y and Z respectively and accordingly a crystal rotation and texture formation can be 

calculated for the bcc crystal during any of compression, elongation, rolling and others.  

Second the eight slips, however, must be reduced to five shears according to Taylor’s formidable combination rule of the 

five slips as follows.
9)
 The geometrical condition rule for a given strain cannot be satisfied if the five shears are chosen so 

that two are taken from one group, i.e. one slip plane, and the remaining three are chosen one from each of the three 

remaining groups, in other words, all of which must be chosen so that two shears occur on each of two planes, one on the 

third and none on the fourth.  This rule was properly applied to the present model as exemplified in Fig.2.  By the 

Taylor’s combination rule of the five, Fig.2 in case of dX1 = dY1 = 0 shows two possible combinations（○）of the five slips 

and two impossible ones (×). This phenomenon of two possible combinations on Fig.2 appears in each case of dXi = dYi 

= 0 for four 〈111〉 directions (i=1~4) , and furthermore every for each group around X, Y and Z axes.   

This shows 24(=2×4×3) possible combinations in the intersection of two groups of {110} planes (in this example case 

{101} and {011}) from the three ones. There are three kinds of intersections of two {110} planes as illustrated on 

Fig.1 and the model accordingly provides with 72(=24×3) possible combinations of the five slips as a whole.  

(1)                                (2) 

Fig.2  Example of an intersection between {101} and {011} in Fig.1. 

(1) Eight slips in bcc cubic metal wherefrom five slips are needed for deformation and crystal rotation.    

  (2) Two possible combinations of the five slips (○) and two impossible ones (×) in the model by the rule of the Taylor’s formidable restriction of 

the five slips, “all of which must be chosen so that two shears occur on each of two planes, one on the third and none on the fourth”, are 

exemplified in case of dX1=dY1=0 (dX2=0 or dY4=0 is possible) . 

In this case of the intersection example between {101} and {011} from the three kinds of intersections around Z[001] 

axis in Fig.1, there are geometrical relations as demonstrated in equation (1) among the shears dX1,dX2,dX3 and dX4 on 

{101} group planes on four 〈111〉 directions as well as dY1,dY2,dY3 and dY4 on {011} group planes, and strain 

components, crystal rotations. Similar equations exist also in each case around X[100] and Y[010] cases.  Further, applied 

to equation (1), a calculation is carried out as example for crystal rotation in the possible case(○) of dX1=dY1=0 , dX2=0 

on Fig.2 according to the Taylor’s combination rule of the five slips and its solution is introduced as in equation (2). The 

above example is only one of total 72 possible combinations of the five slips by the three kinds of intersections of two 

{110} planes on 〈111〉 directions in bcc metal and each of the 72 has respectively similar equations as equation (2) . 

Third an actual crystal rotation by equation (2) proceeds only for the case of which the total slip amount Γ(gamma) 

defined by equation (3) is minimum among the 72 cases. Calculation of equation (3) is performed by inserting both 

equation (1) and equation (2) to equation (3).  Suppose one of the 72 cases is selected in the model. 

dX1 = (√6/4)( dε11 + dε12 +dε13－2 dε23 + dφ2－dφ3)  

dX2 = (√6/4)(－dε11 + dε12－dε13－2 dε23 －dφ2－dφ3) (1) 

.............. 

dY4 = (√6/4)(－dε22 + dε12－2dε13－dε23 +dφ1+dφ3 ) 
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dφ1 = dε22 + 2 dε12 －2dε13－dε23  ,  dφ2 = －dε11－dε13   ,  dφ3 = dε12 －2 dε23 (2) 

Γ=√𝑑𝑋1 + 𝑑𝑌1 + √𝑑𝑋2 + 𝑑𝑌2 + √𝑑𝑋3 + 𝑑𝑌3 + √𝑑𝑋4 + 𝑑𝑌4 (3) 

3. Experimental results

According to the model Table 1 demonstrates how final stable rolling orientation in bcc (112)[1̅10] is derived from 

initial orientation  (111)[1̅10] with increase of strain.  At each strain the model selects one solution among the 72 cases 

composed of 24 ones each belonging to any one of X, Y and Z group. In this Table, it may be noted i) how the model gains 

the orientation with strain by way of selecting one of the partitions {±𝑋}, {±𝑌}  and {±𝑍} independently in the 

rotational symmetrical system and ii) how it holds a continuous value of Γ(gamma), the minimum total slip by way of 

equation (3) throughout X,Y and Z group at each strain so smoothly as not to give a fatal discontinuity in the value of 

Γ(gamma). This is in reasonable accord with an expectation that amount of the external work by applied force to material 

shall be continuously changed with strain. 

Table 1. Simulation results by the model how a final stable rolling orientation (112)[1̅10]of bcc metal is derived from initial 

orientation (111)[1̅10] with increase of strain. 

Fig.3 illustrates by the model dynamically how orientations in ODFs map at rolling ratio of (a)6%,(b)38%,(c)62% and 

(d)95% are rigorously accumulated from initial random ones with strain in rolling by the present model and consequently  

Fig.3  A visible demonstration by the model how and when the rolling orientation in bcc metal changes and appears in the ODFs 

map which shows the orientations at rolling ratio of (a)6%,(b)38%,(c)62% and (d)95%. 
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the three stable orientations of bcc metal in rolling
3,10,11)

 such as {112}〈110〉, {11 11 8}〈4 4 11〉 and {100}〈011〉 are 

attained as drawn on Fig.3(d). 

4. Discussion

According to the model Table 1 illustrates how final stable rolling orientation in bcc (112)[1̅10] is derived from initial 

orientation (111)[1̅10] with increase of strain sequentially selecting one among the 72 cases composed of 24 ones each 

belonging to any one of X, Y and Z group. As in Table 1,Γ(gamma), the minimum total slip by way of equation (3) in the 

three X,Y and Z group, is not constant and changes but so gradually as not to give a fatal discontinuity in the value of Γ

(gamma) so that the model may hold the symmetry in the system.  As generally known, even in the stable system 

composed of extreme symmetry, it can lose the symmetry immediately and transiently when exposed to external forces or 

other physical energy.  Even in this case, however, as it is still the orthodoxy accepted by the majority, if a break of 

symmetry is so small where the symmetry recovers immediately and sustains still continuously the original symmetric state 

that the symmetry may still give birth to forceful analytical means to the phenomenon .
12)

 Besides example of Table 1, it is 

supposed that such phenomena by the model may happen throughout the whole orientation as shown in Fig.3. 

Similar model on face-centered-cubic(fcc) metal already reported by the author requires 24 cases in total for one solution 

where two combinations of five slips are accepted by the Taylor’s formidable combination rule of the five slips as 

similarly as in Fig.2 on {111} planes on every four directions of 〈110〉 for each group of X, Y and Z principal axes of fcc 

metal.
13-15)

  A ratio of the 24(=2×4×3) of fcc metal to the 72 of bcc metal which has three intersections of {110} planes, 

implies a ratio of one {111} slip plane on direction 〈110〉 of fcc metal to at least three slip planes {110}, {112} and 

{123} on direction of 〈111〉 in the pencil glide theory of bcc metal. The idea which utilized the rotational symmetry 

among X, Y and Z principal axes was also applied for texture formation of NaCl structure.
16) 

5. Conclusion

There are 72 combinations of the five slips on {110} planes based on Taylor’s formidable restriction rule of the five slips 

among three kinds of intersections of two {110} planes on 〈111〉 direction in bcc metal based on the rotational 

symmetry of the principal axes of X[100], Y[010] and Z[001]. One solution of crystal rotation among the 72 is selected by 

the minimum total slip at every strain and simulates properly lengthy of accumulated researcher’s experimental results such 

as the three stable orientations of bcc metal in rolling {112}〈110〉, {11 11 8}〈4 4 11〉 and {100}〈011〉.  

References 

[1] Calnan E A and Clews C J B 1951 Phil.Mag.42 616 

[2] Opinsky A J and Smoluchowski R 1951 J.App.Phys. 22 No.12 p1488 

[3] Dillamore I L and Katoh H 1974 Metal Science 8 73 

[4] Rollet A D and Kocks U F 1988 Proc.ICOTOM 8 p 375   

[5] Barrett C S, Ansel G and Mehl R F 1937 Trans.Am.Soc.Metals 25 702 

[6] Barrett C S, Ansel G and Mehl R F 1937 Trans AIME 125 516 

[7] Armstrong M A 2010 Groups and Symmetry (Springer) pp 104-165 

[8] Noether E 1918 Nachr.Gesellsch.Wiss.Goettingen 2 235 

[9] Taylor G I 1938 J.Inst.Met 62 307 

[10]Gensamer M and Mehl R F 1936 Trans. AIME 120 277  

[11]Rollet A D and Wright S I 1998 Texture and Anistropy (Cambridge University Press) pp 179-201 

[12] Kazama Y 2008 Symmetry and conservation quantity (Science Ltd, Japan) pp 26-32 

[13] Masui H 1999 Acta mater 47 No.17 p 4283 

[14] Masui H 2005 Materals Science Forum 495-497 p 971 

[15] Masui H 2008 Ceramics Trans 201 489 

[16] Masui H 2008 Ceramics Trans 201 239 

17th International Conference on Textures of Materials (ICOTOM 17) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 82 (2015) 012010 doi:10.1088/1757-899X/82/1/012010

4


