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Abstract. The structural and electronic properties of crystalline pentacene has been 

investigated within the framework of density functional theory including van der Waals 

interactions. The computed lattice parameters have good agreement with experimental data. 

We studied on the structural and electronic properties of the pentacene under the hydrostatic 

pressure of 0–10 GPa. The isothermal equations of state calculated from the results show good 

agreement with experiment in the pressure intervals studied. Using the Murnaghan equation of 

state it has been established that compression bulk modulus is B0=11.42 GPa and it has good 

agreement with the experimental value. We have also calculated the quasiparticle band 

structure of pentacene with the G0W0 approximation.  

Keywords: pentacene, density functional calculations, dispersion interaction, equation of state, 

quasiparticle band structure. 

1.  Introduction 

Currently, oligoacenes are widely used for practical applications and due to their optical properties 

still have prospects for other practical applications. Pentacene is a typical representative of these 

compounds, besides, the first pentacene-based organic processor has recently been made. One of the 

most perspective trends of organic crystal applicability is the possibility to create new and simple 

semiconductor devices. Notable achievements have been made in this field and there are sufficient 

conditions for creating stable organic semiconductor transistor. The main advantage of organic 

semiconductors is that they are flexible and easy-to-manufacture, therefore, that makes it possible to 

create new pentacene –based electronic devices. Flexibility is one of the main advantages of organic 

semiconductors. For this reason it is interesting to investigate the effects of mechanical deformations 

on electronic properties. The perylene unit cell has the symmetry group 1P under normal conditions 

[1]. The projection of the unit cell on the cb plane is shown in Fig. 1. The unit cell contains two 

molecules involved in van der Waals interactions. The pentacene molecule in the crystal is presented 

in figure 1. 

2.  Computional details 

First-principles total energy calculations were carried out within density-functional theory with a 

plane-wave pseudopotential approach. The computations were performed with the Quantum 

ESPRESSO (QE) [2, 3] suite of electronic structure, using the Perdew–Burke–Ernzerhof (PBE) 

parametrization [4]. The cutoff energy of plane waves was set to 55 Ry. Brillouin zone sampling was 
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performed by using the Monkhorst–Pack scheme [5] with a k-point grid of 3x2x2. The values of the 

kinetic energy cutoff and the k-point grid were determined to ensure the convergence of total energies. 

We used in our study the fully non-local exchange–correlation rev-vdW-DF2 [6, 7, 8]. Also, we used a 

London-type empirical correction for dispersion interactions DFT-D3(BJ) [9]. Structural data [1] were 

used as the initial geometry. Also, the calculations were performed with the CRYSTAL09 [10], using 

hybrid functional PBE0. In this case structural parameters, calculated using QE, were used as the input 

data. We have used the implementation of the G0W0 approximation [11, 12] provided by the code 

YAMBO [13]. The cutoff energy of plane waves was set to 65 Ry. The dielectric function is 

calculated using the plasmon-pole approximation. The GW dielectric matrix cutoff is 8 Ry. To obtain 

convergence, we used 400 unoccupied states. 

 

Figure 1. Crystal structure of pentacene viewed along a axis (a).The pentacene molecule in the 

crystal (b). 

 

The main idea of the DFT-D algorithm consists in adding the empirical potential to the exchange–

correlation potential. The total energy is given by 

  dispDFT-KSD-DFT EEE   (1) 

where EKS-DFT is the usual self-consistent Kohn–Sham energy as obtained from the chosen DF and Edisp 

is an empirical dispersion correction. The DFT-D2 scheme is included in the QE [2]. We carried out 

computations within the DFT-D3(BJ) [9]. 

3.  Results and discussion 

3.1.  Equation of state 

Our computed lattice parameters for the pentacene are given in table 1. Experimental values are also 

listed. The modern versions of the DFT-D and vdW-DF predict the lattice parameters that have good 

agreement with the experimental data. 

Figure 2 shows the variation of the lattice parameters and unit cell volume for pentacene with 

pressure as predicted using DFT-D3(BJ). The obtained results were comparable to the experimental 

values [14]. There is good agreement between the computed and experimental values. As the 

computation was performed at T = 0 K, the V(P) dependence should be below experimental data 

(T=100 K). Generally, DFT-D3(BJ) leads to good agreement with the experimental data. There is the 

difference between the experimental and theoretical data at high pressure. Similar results were 

observed for the values calculated using rev-vdW-DF2 and other schemes [15]. 

Pressure dependence on volume is usually written in the form of isothermal equation of state for 

solids. The parameters of this equation are V0 - equilibrium volume, 
0B  - isothermal bulk modulus and 

0B - its pressure-derivative, defined at zero pressure. Two semi-empirical isothermal equation of state 
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(EOS) – Vinet, and Murnaghan – were used to analyze the compression curves for pentacene. These 

equations are as follows: 
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Table 1. Computed and experimental lattice parameters for pentacene at ambient pressure. 

 DFT-D3(BJ) Rev-vdW-DF2 Exp. [1] 

a, Å 6.243 6.228 6.266 

b, Å 7.769 7.572 7.775 

c, Å 14.432 14.331 14.53 

α, ° 76.269 77.384 76.475 

β, ° 88.414 88.285 87.682 

γ, ° 84.573 84.446 84.684 

V0, Å
3
 676.955 656.491 685.155 

 

 

Figure 2. Unit cell dimensions as a function of pressure from DFT-D3(BJ) and experiment [14]. 

 

Table 2 shows parameter values which were fitted for the both isothermal equations of state. The 

computed bulk modulus and its pressure derivative have good agreement with the experimental values 

and computations of other authors. The values calculated using DFT-D3(BJ) have better agreement 

with the experimental data. Depending on the conditions of crystal growth, pentacene under normal 

conditions may be in two stable forms. There is only one phase at pressure 0.2 GPa and higher, which 

has been studied in present work. Thus, there are some problems in experimental definition of crystal 

volume under normal conditions, and this leads to scattering of parameter values of equations of state. 

3.2.  Band structures 

The calculated band structure for crystalline pentacene is presented in figure 3. The reference point is 

the top of the valence band. The designation of points and choice of lines are in accordance with [16]. 

The values of band gaps (Egap) are listed in table 3. At the ambient pressure the band gap Egap = 1.72 

eV (PBE0). We have also calculated the band structure of pentacene with the G0W0 approximation 

(Egap = 2.03 eV). The top of the valence band and the minimum value of the conduction band is 

realized at the L point. Thus, the fundamental band gap is a direct gap. 

 

RTEP2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 81 (2015) 012120 doi:10.1088/1757-899X/81/1/012120

3



 

 

 

 

 

 

Table 2. Comparison of bulk modulus (
0B ) and its pressure-derivative (

0B ) determined from 

the EOS analyses of pentacene. 

Method V0(Å
3
) Murnaghan Vinet 

B0(GPa) B0' B0(GPa) B0' 

DFT-D3(BJ) 676.955 11.42 5.21 10.54 6.70 

Rev-vdW-DF2 655.679 14.11 5.20 13.22 6.54 

Exp. [14] 696.0±3.7 9.6±1.0 6.4±0.5 - - 

 

The band structure presents weakly dispersive energy levels originated in molecular orbitals. 

Figure 3 shows the band structures under hydrostatic pressure of 10 GPa. The pressure increases band 

dispersion and decreases band gap. Lower unoccupied bands are particularly strongly split. The 

calculated quasiparticle band gap at 10 GPa equal 1.05 eV. This behaviour of the band gap is 

confirmed by both experimental [17] and theoretical data [15]. 

 

 

Figure 3. Band structure E(k) of crystalline pentacene within GGA/PBE (solid lines) and G0W0 

approximation (points) at ambient and hydrostatic pressure of 10 GPa . The top of the valence 

band indicated by the Fermi level (dashed line). 

 

Table 3. The band gaps (eV) of pentacene obtained using various of the exchange–

correlation functionals. 

G0W0 PBE PBE0 PBE[15] HSE03[15] PBE0[15] 

2.03 0.54 1.72 0.858 1.431 2.031 

 

One of the important characteristics of chemical bond is the distance between the atoms. The effect 

of pressure is shown in reduction of the distance between the molecules, however, the changes in bond 

lengths within the molecule are much smaller. Mulliken population analysis has allowed us to 

determine the crystal atomic charges (table 4). Though in the presented schemes they do not have a 

clear physical sense, they allow establishing the atom charge change. 
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3.3.  Electron densities 

The electron densities were calculated with PBE0 hybrid density functional. The distribution of total 

and deformation electron densities (difference between total and superposition atomic electron 

densities) on the plane is presented in figure 4. Pentacene molecule in the crystal is not planar 

molecule. The positive values are marked by solid line, negative by dashed line, while the null contour 

is marked by a dotted line. The interval between the isolines equals 0.05 e Å
-3

. It has been established 

that when a chemical bond in the molecule is formed, the charge leakage occurs in the C–C bond line 

as well as in the C–H antibonding regions. The distribution of deformation density is typical for sp
2
 

hybridization. The peaks of electron density between carbon atoms are stretched perpendicular to the 

C–C bond lines. The nonhybridized p-orbitals are perpendicular to the molecule plane and responsible 

for the socalled p-stacking. The pressure of 10 GPa causes a slight change for the distribution of 

deformation density, atomic charges and interatomic distance. Thus, the pressure of 10 GPa has 

significant impact on the energy bands, which is caused by the convergence of molecules, but the 

molecules remain virtually undeformed. 

 

Table 4. Atomic charges calculated according to 

Mulliken scheme for the pentacene (|e|). 

Atom Pressure, GPa 

0 5 10 

С(1) -0.171 -0.175 -0.184 

С(2) -0.011 -0.021 -0.009 

С(3) -0.169 -0.175 -0.186 

С(4) -0.012 -0.025 -0.022 

С(5) -0.163 -0.164 -0.167 

C(6) -0.188 -0.204 -0.206 

C(7) -0.187 -0.197 -0.193 

C(8) -0.145 -0.139 -0.148 

C(9) -0.019 -0.028 -0.014 

C(10) -0.168 -0.171 -0.176 

C(11) -0.012 -0.019 -0.011 

H(1) 0.179 0.191 0.192 

H(2) 0.179 0.190 0.191 

H(3) 0.177 0.182 0.181 

H(4) 0.171 0.177 0.178 

H(5) 0.171 0.179 0.179 

H(6) 0.186 0.198 0.197 

H(7) 0.179 0.190 0.192 

4.  Conclusions 

According to the ab initio calculations, crystalline pentacene has been studied. The relaxed lattice 

parameters, band structure, distribution of electronic densities, bulk modulus and its pressure-

derivative of the pentacene were computed in the framework of DFT. The determined dependencies of 

the values of lattice parameters on pressure are in good agreement with experimental data. It is 

established that within DFT-D3(BJ) bulk modulus is B0=11.42 GPa, that has good agreement with 

experimental data. The quasiparticle band gap at ambient pressure and 10 GPa is computed with the 

G0W0 approximation and equals 2.03 and 1.05 eV, respectively. The pressure leads to the decrease in 

the distance between the crystal molecules and increases overlapping of their molecular orbitals. 

RTEP2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 81 (2015) 012120 doi:10.1088/1757-899X/81/1/012120

5



 

 

 

 

 

 

 

Figure 4. Total electron density map of crystalline pentacene at the ambient (a) and hydrostatic 

pressure of 10 GPa (b) (in logarithmic scale). Deformation electron density map at the ambient 

(c) and hydrostatic pressure of 10 GPa (d). 
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