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Abstract. Nanocrystalline samples of Ba1-xCaxF2 prepared by high-energy milling show an 

unusually high F
-
 ion conductivity, which exhibit a maximum in the magnitude and a minimum 

in the activation energy at x = 0.5.  Here, we report an X-ray absorption spectroscopy (XAS) at 

the Ca and Sr K edges and the Ba L3 edge and a molecular dynamics (MD) simulation study of 

the pure and mixed fluorides.  The XAS measurements on the pure binary fluorides, CaF2, SrF2 

and BaF2 show that high-energy ball-milling produces very little amorphous material, in 

contrast to the results for ball milled oxides.  XAS measurements of Ba1-xCaxF2 reveal that 

for 0 < x <1 there is considerable disorder in the local environments of the cations which is 

highest for x = 0.5.  Hence the maximum in the conductivity corresponds to the composition 

with the maximum level of local disorder.  The MD calculations also show a highly disordered 

structure consistent with the XAS results and similarly showing maximum disorder at x = 0.5. 

1. Introduction 

There are numerous reports in the literature that atomic migration in nanocrystals is unusually 

fast compared to the parent bulk.  In ionic materials the origin for enhanced diffusion has been 

assigned to atomic disorder along interfaces and surfaces [1-4], however, in many cases, the 

experimental data in many cases are ambiguous.  The data for the binary oxides is particularly 

varied and is very dependent on the method of sample preparation [5-9].  In contrast 

unusually high ionic conductivities have been established in nanocrystalline alkaline earth 

fluorides.  Conductivity measurements on pressed pellets of 9 nm particles of calcium fluoride 

prepared by the inert gas condensation method showed values approximately four orders of 

magnitude higher than bulk material [10] and were interpreted in terms of the space charge 

model [11] developed by Maier [12-14].  The space charge model was also used to interpret 

the exceptionally high ionic conductivity of barium fluoride (BaF2) [15].  This work was 

followed by a report by Heitjans and co-workers of high fluoride ion diffusivity in high-

energy ball-milled nanocrystalline BaF2 and CaF2 as well as in BaF2 - CaF2 composites [16].  

Later work [17] revealed that nanocrystalline high-energy ball-milled BaF2 and CaF2 had a 

conductivity two orders of magnitude higher than the parent compounds.  In addition, the 
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presence of a metastable ternary Ba1-xCaxF2 compound which retained the cubic fluorite 

structure was detected [17].  It was shown that this compound could be prepared in 

nanocrystalline form for 0 ≤ x ≤ 1 by high-energy ball-milling and the conductivity had a 

well-defined maximum at x = 0.5 and a minimum in the activation energy at the same 

composition[18].  In addition, high speed magic angle spinning (MAS) 
19

F NMR revealed 

that there were five distinct F
-
 sites [18].  These sites are characterized by a distinct number of 

Ba and Ca cations in the first coordination shell: [Ba]n[Ca]4-n (0 ≤ n ≤ 4).  The mixed sites 

with n = 1, 2, 3 dominate the NMR spectra at intermediate values of x.  Presumably, the 

mixed cation sub-lattice causes the metastability of the compounds, influences both the 

formation energy of, for example, F
-
 interstitials for example, as well as their migration 

energy leading to the observed fast ion conduction.  A molecular dynamics simulation of the 

system [19] rationalised the effects as due to the large size difference between the cations, 

with Ca
2+

 favouring the formation of nearest neighbour interstitial F
-
 ions and Ba

2+
 favouring 

the formation of neighbouring F
-
 vacancies. 

In this contribution we report the results of X-ray absorption spectroscopy (XAS) 

measurements and molecular dynamics (MD) simulation studies of Ba1-xCaxF2.  These probe 

the local structure and provide insight into the origins of the conductivity behavior. 

 

2. Methodology 

2.1 Materials 

High energy ball-milling was used to prepare nanocrystalline CaF2, SrF2, BaF2, Ba1-xCaxF2 (x 

= 0, 0.25, 0.5, 0.75 and 1), Ca0.5Sr0.5F2 and Ba0.5Sr0.5F2 using procedures described in 

reference [18].  The particles sizes as determined from the broadening of the peaks in the 

XRD powder patterns were typically 9-13 nm, if calculated with the Scherrer equation or 30-

60 nm if the Williamson and Hall equation was used to include strain broadening.  For the 

XAS measurements the powders were mixed with cellulose diluent and pressed into 13 mm 

diameter pellets. 

 

2.2 XAS measurements 

XAS scans were collected for the appropriate edge (Ca and Sr K edges, Ba L3 edge) at room 

temperature on beam line B18 at the Diamond Light Source [20].  Data collection used 

transmission mode with ion chamber detectors.  Continuous scanning (QEXAFS) was 

employed; an individual scan required 180 s and several scans were performed to improve the 

signal-to-noise ratio.  The synchrotron energy and current were 3 GeV and 300 mA, 

respectively.  The beam size at the sample was 700 × 700 microns.  Powdered samples were 

mixed with cellulose as a diluent and pressed into 13 mm diameter pellets.  The spectra were 

normalized in Athena and fitted to scattering models in R-space produced by FEFF in Artemis 

[21]. 

 

2.3 Molecular dynamics simulation 

MD simulations were performed using the DL-POLY code [22].  The Born model of the ionic 

solid, together with full ionic charges, was used to describe the Ba-F, Ca-F and F-F 

interactions.  The nanoparticles, which comprised 13824 anions and 6912 metal cations, were 

generated using simulated amorphisation and recrystallisation [23]; three model nanoparticle 

solid solutions were generated: Ba0.25Ca0.75F2, Ba0.5Ca0.5F2 and Ba0.75Ca0.25F2. 
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3 Results and discussion 

3.1 XAS measurements 

All the spectra were analysed to yield the 

details of the local structure, i.e. bond 

lengths, Debye-Waller factors, etc., 

however the qualitative information is best 

represented by the Fourier transform (FT) 

of the k
3
 weighted normalised EXAFS and 

these will be used in this short paper.  

Firstly, we consider the FTs of 

nanocrystalline and bulk CaF2 shown in 

Figure 1.  Very similar results were found 

for SrF2 and BaF2 (not shown here).  There 

is very slight attenuation of the peaks in the 

nanocrystalline material, which is a distinct 

contrast to the XAS data for ball-milled 

oxides [5, 6, 24].  This indicates that the 

high-energy ball-milled binary fluorides are 

highly ordered with minimal amounts of 

amorphous material, possibly due to 

stronger ionic bonding in the fluorides.  It 

seems reasonable to assume the high-

energy ball-milled ternary Ba1-xCaxF2 

compound has a similar low amorphous 

content. 

The FTs of the Ca K edge EXAFS of the 

Ba1-xCaxF2 samples are shown in Figure 2.  

The two dominant peaks in the plot at ~ 2.3 

Å and ~ 3.8 Å correspond to the nearest 

neighbor shell of eight F
-
 ions and the shell 

of next-nearest neighbour cations, 

respectively.  These peaks are clearly attenuated for the samples with x < 1 as a result of the 

disorder created in the local structure due the replacement of Ca
2+ 

by the larger Ba
2+

 cation.  

The effect is greatest for x = 0.5, where the second peak has almost disappeared, showing this 

sample has the highest level of disorder.  Similarly the Ba L3 edge EXAFS of these samples 

showed that the FT was most attenuated for the sample with x = 0.5.  The maximum observed 

in the conductivity of this system is also found at x = 0.5 [18] and it is reasonable to associate 

this with the maximum level of local disorder. 

 

3.2 MD simulations 

Analysis of the model nanoparticles revealed all three Ba1-xCaxF2 samples (x = 0.25, x = 0.5 

and x = 0.75) were crystalline and conform to the fluorite crystal structure. The particles were 

highly disordered with F
-
 anions located far from their lattice sites; domains rich in either Ca 

or Ba showed relatively less disorder of the local anion sub-lattice compared to domains 

comprising Ca and Ba on neighbouring cation sites. 

The nanoparticle with x = 0.5 comprised the highest level of sub-lattice disorder, Figure 3, in 

accord with the EXAFS data. There is a higher probability of finding Ca and Ba ions on 
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Figure 1. The FT of the normalised Ca K 

edge EXAFS of CaF2. 
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Figure 2. The FT of the normalised Ca 

K edge EXAFS of Ba1-xCaxF2. 
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Figure 3. Ball and stick model of a segment of 

the Ba0.5Ca0.5F2 nanoparticle showing the 

considerable disorder of the F
-
 anion sub-

lattice. Ba
2+

 ions are coloured blue, Ca
2+

 ions 

are yellow and F
-
 ions are red. The sticks, 

linking the F
-
 ions, are included to help 

visualize the fluorite crystal structure. 

neighbouring lattice sites for the x = 0.5 

system, compared to either the x = 0.25 or x 

= 0.75 system, and therefore a higher 

probability of a disordered anion sub-

lattice. The maximum disorder in the anion 

sub-lattice, at x = 0.5, coincides with the 

maximum in the conductivity. Accordingly, 

we attribute the high ionic conductivity to 

the disorder of the anion sub-lattice. 

 

4. Conclusions 

The important outcomes of this combined 

XAS and MD study are as follows:- 

1. High-energy ball-milled CaF2, SrF2 and 

BaF2 contain very small amounts of 

amorphous material. 

2. Ba1-xCaxF2 for 1 < x > 0 is disordered 

with the maximum disorder at x = 0.5, 

which is the composition of the 

maximum ionic conductivity. 
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