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Abstract. Approximate analytical solutions are presented for converging flow in between two 

parallel non rotating disks.  The static pressure distribution and radial component of the 

velocity are developed by averaging the inertial term across the gap in between parallel disks.  

The predicted results from the first approximation are favourable to experimental results as 

well as results presented by other authors.  The second approximation shows that as the fluid 

approaches the center, the velocity at the mid channel slows down which is due to the struggle 

between the inertial term and the flowrate. 

1.  Introduction 

Converging flow is defined by fluid flowing from the periphery towards the center.  As the fluid flows 

radially towards the center, the velocity increases in order to satisfy continuity equation.  Analytical, 

numerical and experimental studies have been carried out by others in order to characterize the 

phenomena [1]-[5].  Lee and Lin [1] presented a simplified solution by linearizing the Navier-Stokes 

equation by replacing radial velocity with mean radial velocity which resulted in dimensionless 

pressure gradient equation.  According to Savage [2], Livesey J.L. considered the inertial term and 

used integral approach and the assumption of parabolic velocity profile in order to solve the problem.  

Savage [2] obtained a series solution by perturbing the creeping-flow solution.  Vatistas [3] also 

included the inertial term and linearized the inertial term in the momentum equation by taking radial 

velocity from the continuity equation averaged over the gap.  Then, the linearized differential equation 

was solved using method of separation variables.  The author derived the static pressure distribution, 

radial component of the velocity as well as the friction coefficient [3].  In paper [4], the authors 

presented a numerical solution which resulted in the characterization of the static pressure distribution 

and the radial velocity.  Zitouni and Vatistas [5] solved the problem by using the power series 

solution.  This paper focuses on an approximate analytical solution to a nonlinear problem for radial 

flow in between parallel disks.  Equations for static pressure distribution and velocity profiles are 

derived by averaging the inertial term over the space between the disks. 
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2.  Analysis 

2.1.  First Approximation 

The flow is assumed to be laminar, incompressible, non-swirling and purely radial.  The continuity 

equation and Navier-Stokes momentum equation in cylindrical coordinates are transformed into 

nondimensional form by using the following parameters: 

vr =
vr

∗

v0
∗ vz =

vz
∗

v0
∗ r =

r∗

R0
∗

z =
z∗

h∗ Re =
ρv0

∗h∗

μ
 ξ =

h∗

R0
∗

P =
P∗

ρ∗v0
∗2   ;   P∗ = Pr − Pinlet 

where 𝜌 = density  𝜇 = dynamic viscosity Pr = current pressure 

Note: (*) symbolizes dimensional parameters for the velocity component and pressure distribution in r 

and z direction 

 

The equations are simplified and can be written as: 

Continuity equation 

 
1

r

∂vrr

∂r
+

∂𝑣𝑧

∂z
= 0 

r momentum equation 

 −vr
dvr

dr
ξ − vz

dvr

dz
= +

dP

dr
ξ −

1

Re

d2vr

dz2  

where  
vr = radial velocity vz = axial velocity P = dimensionless pressure   

Re = Reynolds number r = dimensionless radial coordinate  

z, ξ = dimensionless axial coordinate 

  

 
Figure 1. Cross section of flow between parallel disks. 

 

For the first approximation, the nonlinear convective acceleration term is linearized by averaging 

across the gap between the parallel disks, 

 B(r) = ∫ (−vr
dvr

dr
ξ − vz

dvr

dz
) dz

1

0
  

Then (2) can be written as: 

 
1

Re

d2vr

dz2 =
dP

dr
ξ − B(r) = A(r)  

The velocity function can be calculated by integrating (4) twice with respect to the distance between 

the parallel disks as shown: 
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1

Re
vr =

A(r)z2

2
+ c1z + c2 

where c1 and c2 are constants of integration.  The evaluation of the constants of integration is made 

using the following boundary conditions: 

BC1 ∶  z = 0,
dvr

dz
= 0

BC2 ∶  z = 1, vr = 0

From continuity equation, 

 rvr = D = constant  
Integration of (6) with respect to z (from 0 to 1) yields, 

 ∴ A(r) =
3D

rRe
  

Thus, 

 vr(1) =
3D

2r
(z2 − 1) 

Based on (8), it is a parabolic velocity profile.  Thus, (3) is reduced to: 

B(r) = ∫ −vr

dvr

dr
ξ dz

1

0



 ∴ B(r) = (−
8

15
)

ξRe2A(r)A′(r)

4
 

Then from (7) and (9) yield 

dP

dr
=

3D

rReξ
+

6D2

5r3


∆P = Pr − Pi ;  Pi = inlet static pressure

Thus, the pressure distribution is given by: 

 Pr − Pi=1 = ln r
3D

Reξ
−

3D2

5r2 +
3D2

5(1)2 

where Reξ = Reduced Reynolds number, Re̅̅̅̅  

 

2.2.  Second Approximation 

Second approximation is carried out in order to check the accuracy of the first approximation. 

r momentum equation can be written as: 

 −vr
dvr

dr
−

vz

𝜉

dvr

dz
= +

dP

dr
−

1

Re̅̅ ̅̅

d2vr

dz2  

Substituting the inertial term with results obtained from the first approximation and integrating (11) 

twice together with boundary condition BC1 and BC2 results in: 

 ∴ vr(2) = Re̅̅̅̅ (
dP

dr
×

z2

2
−

9z6

120r3 +
18z4

48r3 −
9z2

8r3 +
33

40r3 −
1

2
×

dP

dr
) 

From Continuity Equation, 

r ∫ −vr

1

0

dz = ∫ D
1

0

dz


dP

dr
=

3D

rRe̅̅ ̅̅ +
54

35r3 

Integrating with respect to r, the pressure distribution for the second approximation is given by: 

 Pr − Pi=1 =
−27

35r2 +
3D

Re̅̅ ̅̅ ln r +
27

35
 (14)
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Substitute pressure gradient (13) into the velocity profile (12), 

 vr(2) =
−3D

2r
+

3Re̅̅ ̅̅

56r3 +
3Dz2

2r
−

99Re̅̅ ̅̅ z2

280r3 +
3Re̅̅ ̅̅ z4

8r3 −
3Re̅̅ ̅̅ z6

40r3  

where D=1 after normalizing in terms of flow rate as shown: 
 𝑟𝑣𝑟 = 𝐷 = 1 (16) 

 

3.  Results and Discussion 

The analytical solutions are validated by comparing the equation with equations developed by other 

authors and experimental data.  The first approximation results in a parabolic velocity profile as shown 

in figure 2. 

 

 
Figure 2. 1st Approximation radial velocity profile. 

 

However, the second approximation shows a different flow kinematics as shown in figure 3.  Based 

on the calculations, the profile flattens as the fluid flows towards the center.  At radial distance (r) less 

than 0.3, it can be seen the maximum velocity profile is no longer at the mid channel.  This 

phenomenon is caused by the struggle between inertial term and flowrate and is verified as the 

continuity equation holds. 

 
Figure 3. 2nd Approximation radial velocity profile. 

 

The static pressure distribution obtained in this analysis is compared with results from Vatistas [3], 

Lee &Lin [1], Livesey [2] and Savage and Kwok & Lee which were presented in Vatistas, Ghila & 
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Zitouni [4] and are in favor with their solution as shown in figure 4 and figure 5.  The first 

approximation has the exact same solution as obtained by Kwok and Lee [4] and Livesey [2].  The 

second approximation is very close to the results obtained by Savage [4] and shows a larger change in 

pressure as compared to the first approximation.  This is due to the higher wall shear stress 

experienced by the second profile as compared to the parabolic profile obtained from the first 

approximation.  Equation (17) and (18) shows shear stress for first approximation and second 

approximation respectively. 

 𝜏 =
3𝑧

𝑟𝑅𝑒
 (17) 

 𝜏 =
1

𝑅𝑒
(

3𝑧

𝑟
−

99𝑅𝑒̅̅̅̅ 𝑧

140𝑟3 +
3𝑅𝑒̅̅̅̅ 𝑧3

2𝑟3 −
9𝑅𝑒̅̅̅̅ 𝑧5

20𝑟3 ) (18) 

 

 
Figure 4. Pressure distribution of water along the radius  

( 𝑅𝑒̅̅̅̅ = 0.43). 

 

 
Figure 5. Static pressure distribution using different reduced 

Reynold’s number. 
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Table 1 shows pressure distribution comparison presented by Vatistas, Ghila & Zitouni [4] and 

complimented by our results.  However, there are differences between Savage and Livesey’s results as 

cited by Savage [2] and not exactly the same as presented by Vatistas, Ghila & Zitouni [4]. 

 

Table 1. Pressure distributions. 

 ∆𝐏 

Vatistas [3] 
6𝑟̅2 ln 𝑟 − 𝑅𝑒̅̅̅̅ (1 − 𝑟2)

2𝑟2𝑅𝑒̅̅̅̅
 

Kwok and Lee [4] 

Livesey [2] 
0.6 −

0.6

𝑟2
−

3 ln 𝑟

𝑅𝑒̅̅̅̅ (𝑟2 − 1)
+

3𝑟2 ln 𝑟

𝑅𝑒̅̅̅̅ (𝑟2 − 1)
 

Savage [4] 0.77 −
0.77

𝑟2
−

3 ln 𝑟

𝑅𝑒̅̅̅̅ (𝑟2 − 1)
+

3𝑟2 ln 𝑟

𝑅𝑒̅̅̅̅ (𝑟2 − 1)
 

1st Approximation 
15𝑟2 ln 𝑟 − 3𝑅𝑒̅̅̅̅ (1 − 𝑟2)

5𝑅𝑒̅̅̅̅ 𝑟2
 

2nd Approximation 
−27

35𝑟2
+

3

𝑅𝑒̅̅̅̅
ln 𝑟 +

27

35
 

 

4.  Conclusion 

The approximate analytical solution for Navier-Stokes on radial flow between parallel disks is 

developed.  The pressure and radial velocity distribution are obtained by averaging the inertial term 

across the gap between the parallel disks.  This approach allows one to develop the second 

approximation for the velocity profile and pressure gradient.  The static pressure distributions are in 

agreement with experimental results and results obtained by other authors.  Thus, the analytical 

method is verified.  This study also shows that in contrary to the other authors, the velocity profile is 

not constantly in a parabolic shape as the fluid flow towards the center and it is verified as the 

continuity equation holds. 
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