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Abstract. Vibrations and shocks are studied using various techniques and analyzed to 

predict their detrimental effect on the equipment and structures. In cases, where the effects of 

vibration become unacceptable, it may cause structural damage and affect the operation of the 

equipment. Hence, adding a discrete system to isolate the vibration from source becomes 

necessary. The Wire Rope Isolator (WRI) can be used to effectively isolate the system from 

disturbing vibrations. The WRI is a type of passive isolator that exhibits nonlinear behavior. It 

consists of stranded wire rope held between two metal retainer bars and the metal wire rope is 

made up of individual wire strands that are in frictional contact with each other, hence, it is a 

kind of friction–type isolator. This paper compiles the research work on wire rope isolators.  

This paper presents the research work under two categories, namely monotonic and cyclic 

loading behaviors of WRI. The review also discusses the different terminologies associated 

with vibration isolation system and highlights the comparison between various isolation 

systems. 

1. Introduction  

Vibrations and shocks are studied using various techniques and analyzed to predict their detrimental 

effect on the equipment and structures. In many cases, the vibrations are unavoidable, but it will be 

within tolerable limits. In other cases where the vibration becomes intolerable, it is required to analyse 

the system for the effects of vibrations and improve the mechanical properties or in a place where are 

system design restricted in improving mechanical properties, it is then required to add an isolation 

system to counter the vibrations [1]. The application of vibration isolation system requires an 

understanding of the vibration control components, namely, source, path and receiver of the vibration 

[2].  

The source of the vibration can be either natural or man-made. The natural sources include 

earthquake, wind, ocean waves, etc. and man-made sources include vibrations due to the operation of 

heavy machineries, construction works, roads and railways, etc. The path is the medium through 

which the vibration is transmitted, such as building components, pipe ducts, etc. The receiver refers to 

the building or equipment which receives the vibration from the source. The vibration control is 

employed based on the level of vibrations that a receiver can withstand without undergoing structural 

damage or affecting the functionality. The cases in which the level of vibrations is unacceptable, the 

isolation system is generally applied to cut off the path of the vibration to enhance the safety of the 

receiver.  
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In order to understand the isolation system, first it is required to understand the terms, namely, 

transmissibility and natural frequency. Transmissibility is a ratio of the vibrational force being 

measured in a system to the vibrational force entering a system (Figure 1). The transmissibility is a 

direct measure of the amount of vibrations transmitted by the isolation system, for example, if an 

isolation system has the transmissibility of 0.8 then it indicates that 80% of the vibration forces have 

been transmitted through the isolation system. The isolation efficiency provides the direct 

measurement of efficiency of isolation system and it is given by, 

 

Isolation efficiency = 1 – Transmissibility      (1) 

 

 
 

Figure 1. Transmissibility curve with respect to frequency ratio [2] 

 

Natural frequency is the frequency at which the system will vibrate in the absence of any driving 

force or damping. Theoretically, when there is no external force is applied against the system 

vibration, then the system vibrates forever as per Newton’s first law. However, in the real world, there 

exist the force in different forms which act against the vibration and bring the system to rest and such 

phenomenon is called as damping.  It is absolutely required to prevent the system vibrate at its natural 

frequency, as this results in the larger magnitude of displacement and further to failure of components 

or structures in a phenomenon called resonance.   

The concept of isolation and damping are often misunderstood, however, both are different from 

each other. It is required to understand the exact difference between them in order to proceed further. 

Damping refers to the absorption of vibrational energy which has entered the system and dissipating it 

by converting the kinetic energy of vibration into a different form of energy. On the other hand, 

isolation refers to the prevention of vibrations from entering a system. The transmissibility curve 

shown in figure 2 depicts the region of isolation and damping.  Damping is primarily used to prevent 

the system from vibrating in a larger amplitude at its natural frequency, however; the isolation refers 

to the region, which are having lower values of transmissibility [1-3]. However, both isolation and 

damping are used in conjunction to achieve the desirable performance [2].  

A general isolation system has two main components, namely, stiffness and damping. Firstly, the 

stiffness of the isolation system controls the static deflection required for different levels of isolation. 

The lower value of transmissibility can be achieved by increasing the static deflection. The amount of 

transmissibility required for an application differs in each case and depends mainly on the criticalness 

of the application. In general, the transmissibility of about 3% for critical applications and 5 % for 

sensitive applications and 10% for non-sensitive are applied [2]. The values indicated are only for 

reference and the exact amount of transmissibility required has to be calculated for the required 

applications. 
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Secondly, the damping component of isolator enables the energy dissipation of the external 

excitation to suppress it. There are three types of damping: viscous, coulomb, and structural/solid 

damping. Viscous damping is dependent on the velocity of the movement. Coulomb damping is 

dependent on surface friction and the pressure between surfaces. Structural damping, also known as 

hysteresis, is internal friction within the material; all materials exhibit some amount of hysteresis. The 

amount of damping required is subjective and varies with respect to applications. Most of the 

structures have less than 5% inherent structural damping. According to the previous study [3], the 

general guidelines for amount of damping can be taken as 20-25 % of damping for standard 

automobile suspension, 30% damping is typical for a heavy duty suspension and 40% damping is 

typically used for high performance suspense and damping levels above 40% proves very 

uncomfortable to human and tends to loose structural joints.  

 

 
 

Figure 2. Transmissibility curve with region of damping and isolation [1] 

 

2. Types of isolation system 

The isolation system is categorized into three types, namely, Passive system, Active system and 

Semi-Active system. The active vibration isolation system generally can achieve high performance in 

suppressing the structural vibrations [4-6]. Semi-active vibrations isolations, also called as adaptive–

passive system, contains along with the spring and the dampers, a feedback circuit which consists of a 

sensor, controller, and an actuator (such as Magneto-rheological (MR) or shape memory alloys). 

Feedback circuit monitors real time vibration excitation using sensors and controls the actuators to 

dissipate the energy and achieves relatively better isolation than passive isolation methods [5, 7]. 

However, a fully active isolation system (figure 3) isolates the vibration directly using actuator 

systems without having additional passive dampers [8-10]. 

Many researchers have studied the performance of various control methods for damping using MR 

fluids [11-19] and stated that the damping property of the MR fluid actuators can be controlled by 

varying the viscosity of the MR fluid using a magnetic field. However, active systems are very design 

intensive and require sensors and processors to provide real time data to the isolator. In addition, it 

requires a large amount of power to operate. These necessary features of active isolation systems make 

it the most expensive isolation design. As a consequence of the expense and the large power 

CUTSE2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 78 (2015) 012001 doi:10.1088/1757-899X/78/1/012001

3



 

 

 

 

 

 

requirement, active isolation systems are very uncommon in major industries, except in critical 

applications that require high level isolation such as sensitive testing equipment [20].  

 

  

 
 

Figure 3. Types of  isolation system [9] 

 

Passive vibration isolation, on the other hand, refers to vibration isolation or mitigation of vibrations 

using passive techniques such as rubber pads or mechanical springs. In its simplest form, it is 

represented as a combination of a spring having stiffness (K) and a damper having damping 

coefficient (C), as shown in the figure 3. The spring provides the elasticity to the structure and energy 

dissipation is provided by the damper. Presently, passive energy dissipation devices are the most 

widely used vibration protection systems in industries and buildings because of its simple design and 

low cost [20]. These systems encompass a range of materials and devices for enhancing the damping, 

stiffness and strength, and can be used both for natural hazard mitigation and for rehabilitation of 

aging or deficient structures. Contrary to semi-active systems, passive energy dissipation systems do 

not need an external supply of power in order to operate. Moreover, since energy dissipation devices 

are not an integral part of the supporting structure, they can easily be replaced for maintenance without 

compromising the structural integrity [21]. 

The conventionally designed passive vibration Isolators exhibit linear behavior in both elastic 

stiffness and damping, which restricts the energy dissipation capability [22]. The design of 

conventional passive isolators needs a trade-off with stiffness and damping. The low transmissibility 

over a wide range of frequency can be obtained by reducing the elastic stiffness of the isolator as small 

as possible, however, such case will lead to large static and quasi-static displacements which are likely 

to be detrimental to the equipment supported [2].  

On the other hand, damping of the isolator needs to be increased to reduce the transmissibility at the 

resonance which may cause deterioration to the transmissibility over the high frequency range. 

Moreover, the linear passive isolators are useful only if the excitation frequencies are well above the 

natural frequency of isolators and thus they are limited to cases which has moderate environmental 

disturbance. However, under cases such as shock, random ground motions or impact loads the 

spectrum contains low frequencies which are dangerous to the structures or equipment. Hence the 

limitations of linear can be overcome by developing a passive vibration isolator which exhibits non-

linear behavior [22].  

Several authors have developed different types of nonlinear vibration isolators and have 

investigated the unique dynamic behaviors [23-25]. A comprehensive survey of recent developments 

of nonlinear vibration isolators has been performed by Ibrahim [22], in which many cited studies [26-

31] reveal that the introduction of nonlinear damping and stiffness are of great benefit in vibration 

isolation. Recently Wire Rope Isolators (WRI), a type of passive isolator which exhibits non-linear 

behavior in both elastic stiffness and damping, has become the subject of intensive studies [32, 33]. 

 

3. Wire rope isolators  

Wire rope isolators consist of wire rope strands held between two metal retainer bars in the form of 

helix shape (Figure 4 (a)) or polycal shape (Figure 4 (b)). As the name implies, wire rope isolators use 

metal wire rope made up of individual wire strands that are in frictional contact with each other.  WRI 
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can provide flexibility in all directions and possess inherent damping characteristic derived from 

rubbing and sliding friction between the intertwined cables. It is therefore a kind of friction-type 

damper which adopts stranded wire rope as the elastic component and utilities friction damping 

(Coulomb damping) between the individual wire strands. This friction dominant property causes the 

viscous damping in WRI to be relatively insignificant [34, 35].  

The advantages of WRI include wide temperature range operations between -100oC to +250oC [36] 

and less susceptible to the detrimental effects of environmental conditions like extreme temperature, 

salt, fog, grease, radiation, dust  and low manufacturing cost [37]. The polycal type of WRI is 

primarily used for micro mechanical and electronic applications [37]. For heavy machinery 

applications the helical WRI is used [38].  

 

(a) (b) 

 

Figure 4. (a) Helical Isolator [36] (b) Polycal Isolator [36] 

 

4. Characteristics of WRI 

The geometric characteristic of the WRI is shown in figure 5.  As WRI is a type of passive isolator, 

it can also be represented in a simplified form as a spring-damper element with static elastic stiffness 

(K) and damping coefficient (C) (Figure 6(a)) [39]. The static elastic stiffness can be determined from 

the load-displacement curve under monotonic loading and the damping coefficient can be determined 

using the hysteresis curve obtained from cyclic loading. Monotonic loading refers to loading in one 

direction and cyclic loading refers to a set of loading-unloading sequence. There are three loading 

modes (Figure 6) in which WRI can be used- tension/compression load (along Z), shear load (along X) 

and roll load (along Y) [32, 39]. 

 

 

 

 

 

 

 

Figure 5. Geometric characteristics of 

the WRI                   

 

5.  Selection of WRI 

ITT Inc [38] develops a series of vibration and shock insulators of all types and sizes, including 

WRI and has provided the possible orientations of WRI that can be used in practical applications as 

shown in figure 7. The orientation of the WRI depends mainly on the supporting structure to fix the 

WRI. In the majority of the cases, the tension/compression loading mode is preferred. However based 

on the availability of the supporting structures, the WRI can also be used in the shear and the roll 

mode. ITT Inc [38] provides the procedure for selection of WRI required for applications. The 

procedure mainly relies on the calculation of static elastic stiffness (K) of the WRI. Upon estimating 

the K, based on the weight of the equipment to be supported and disturbing frequency, it is then 

required to identify a suitable WRI model from the catalogue.  
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The catalogue contains the values of the static elastic stiffness values of all WRI provided by ITT 

Inc., which have been experimentally determined under monotonic loading. The static elastic stiffness 

in all different loading modes are available in the catalogue. The WRI, which possess static elastic 

stiffness in the loading mode as required for the application will be selected. The selection procedure 

of WRI is fully based on the monotonic loading response and it should be noted that the behavior 

under cyclic loading is not considered during the selection process due to a lack of information for this 

loading type. The research work on the behavior of WRI under monotonic loading and cyclic loading 

is presented in the next section. 

(a)   (b) (c) 

Figure 6.  (a) Spring-Damper element  (b) Tension/compression and roll, (c) Shear 

 

 
Figure 7. Possible orientations of WRI as suggested by ITT Inc [38]    

    

6. Behavior under monotonic loading 

The study of WRI behavior under monotonic loading provides the knowledge on the static elastic 

stiffness. ITT Inc [38] and Devflex Co [36] develops a variety of WRI in different sizes and stiffness 

values which facilitates the easy selection of WRI for a particular application. The selection procedure 

relies mainly on the static elastic stiffness of the WRI and presently the experimental methods are used 

for its determination. Tinker et al [34, 35] preformed a monotonic shear loading on WRI for the static 

stiffness (Figure 8). However, a comprehensive study on the static elastic stiffness of WRI is not 

available in the literatures. All available literatures on WRI were on the cyclic loading behavior.  

Though the selection procedure relies mainly on static stiffness, presently experimental methods are 

used to estimate the stiffness. However, an analytical model for the static elastic stiffness will avoid 

the time consuming experimental work.  

Knowledge of the behavior of WRI’s post elastic limits enables the prediction of the WRI’s 

capability to sustain further loadings. However, no analytical research on the static elastic stiffness and 

the post elastic behavior of WRI is available. An accurate analytical model, including all the 

influencing parameters will greatly assist the appropriate selection and the design of WRI. 

 

7. Behavior under cyclic loading 

The study of WRI behavior under cyclic loading can provide the knowledge on isolation 

capabilities. WRI exhibits hysteresis behavior under cyclic loading due to energy dissipation through 

coulomb damping. The literature shows only limited research on the hysteresis behavior of WRI using 

experimental methods [32-35, 39]. A study has been conducted by Demetriades et al. [39] on the 

hysteresis behavior of the WRI using a cyclic loading test. They show that WRI exhibits symmetrical 

hysteresis curve for roll and shear loadings as shown in figure 9(a) and asymmetrical hysteresis curve 

(Figure 9(b)) for tension/compression loading. They also reported that WRI provides a 10% damping 
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for large deformation and about 20% to 30% for small deformation. Tinker and Cutchin [35] studied 

the damping phenomenon, the stiffness and the hysteresis behavior and reported that the damping in 

WRI arises from the friction between the individual wire strands.  

 

 

Figure 8. Experimental stiffness curve of WRI 

under shear load [35] 

 

Schwanen [40] reported that the asymmetric hysteresis curve during tension/compression is due to 

hardening and softening of the wire rope spring and found that the wire rope spring undergoes 

softening in compression and hardening in tension. The softening is due to the decrease in the contact 

points between the wire strands under compression load. The hardening in the tension is due to the 

increase in the contact points under tension load, which results in increased friction between the wire 

strands. Massa et al. [33] introduced a ball bearing in the polycal WRI to increase its vertical stiffness. 

Ball bearing provides additional stiffness in the vertical direction to support the normal load of the 

equipment and hence increases the load carrying capacity. Paolacci and Giannini [32] conducted a 

study on the effectiveness of steel cable dampers for the seismic protection of electrical equipment. 

They developed a numerical model for electrical equipment supported by WRI and subjected it to the 

seismic load of the 1980 Irpinia earthquake (Italy). The study shows the effectiveness and potential of 

WRI as a base isolation system 

 

 (a)  (b) 

 

Figure 9. Hysteresis behaviour  (a) under shear loading  (b)  under tension/compression loading [39] 
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7.1. Bouc-Wen Model  

The hysteresis behaviour of the WRI depends on their geometrical properties including wire rope 

diameter, length and width and the number of turns and loading directions [39]. The area under the 

hysteresis curves is the energy dissipated by the WRI during the cyclic loading test [34, 35]. A well-

developed mathematical model of hysteresis behavior would facilitate the prediction of energy 

dissipation capabilities and avoids the time-consuming experimental work. The generalized Bouc-Wen 

(BW) model is commonly used to model the symmetric hysteretic behavior. Many researchers have 

used the BW model to perform mathematical modelling for the hysteresis system in their area of 

research work such as magetorhelogical dampers [13, 42, 43] and piezo electric actuators [41]. The 

generalized Bouc-Wen model of the hysteresis curve is given by 

 
𝑄(𝑥, 𝑥̇, 𝑡) = 𝑔(𝑥, 𝑥̇) + ℎ(𝑥)      (2) 

where Q is the restoring force , g the non-hysteretic component (Equation 3), an algebraic function of 

the instantaneous displacement x and the velocity x  ̇and h the hysteretic component (Equation 4), a 

function of the time history of x [42]. 

 
𝑔 = 𝑐𝑥̇ + 𝛼𝑘𝑥          (3) 

ℎ = (1 − 𝛼)𝑘𝑧       (4) 

where k is the pre-yielding stiffness and α the ratio of post-yielding to pre-yielding stiffness. z is 

described by the non-linear differential equations of Equation.5, 

 

𝑧̇ = (
1

𝜂
) [𝐴𝑥̇ − 𝜐(𝛽|𝑥|̇ |𝑧|𝑛−1𝑧 − 𝜗|𝑥|̇ |𝑧|𝑛)]      (5) 

In Eq.5 the model parameters A, υ, β, ϑ, η and n govern the amplitude, the shape of the hysteresis 

loop, and the smoothness of transition from the elastic to the inelastic region. Different choices of 

model parameters control the shape of the hysteresis curve. When using the Bouc-Wen model for a 

practical application, it is necessary to perform the identification of the model parameters using system 

identification techniques. Many researchers have used techniques like the least square method [43], 

Kalman filter method [44], genetic algorithm based identification [45] to identify the system 

parameters, so that the output of the model matches as accurate as possible with the experimental data. 

The symmetrical hysteresis behavior of WRI under shear and roll loading can be modelled using the 

BW model. However, under tension/compression loading it exhibits asymmetrical behavior and the 

BW model has to be modified suitably for accurate prediction of this asymmetric behavior. 

 

8. Conclusion 

The conventional passive isolators exhibits linear behavior and it needs an improvement to enhance 

the safety of the isolated system. WRI is a non-linear passive isolator and can provide a better isolation 

than the conventional passive isolators. The major advantage of WRI is that, it can provide isolation in 

all three planes and in all orientations. The behavior of WRI can be studied under monotonic and 

cyclic loading to understand its stiffness and damping behavior. WRI is a newly developed isolation 

system relatively, when compared with the linear vibration devices hence literature has only few 

research work. This survey presented the major research work carried on WRI. This paper also 

highlighted the area for the future scope of work in the field of wire rope Isolators.  
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