
Robust H∞ stabilization of a hard disk drive system

with a single -stage actuator

Hendra G Harno1 and Raymond Song Kiin Woon

Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University,
CDT 250, 98009 Miri, Sarawak, Malaysia

E-mail: h.g.harno@curtin.edu.my(@gmail.com)1

Abstract. This paper considers a robust H∞ control problem for a hard disk drive system
with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant
uncertain system where its uncertain parameters and high-order dynamics are considered as
uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is
transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati
equations as nonconvex constraints. The nonlinear optimization problem is then solved using
a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These
solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the
hard disk drive system with a specified disturbance attenuation level.

1. Introduction

Since hard disk drives (HDD) have become portable data storage devices, disturbance rejection
has been one of important features of the HDD in order to prevent shock and vibration from
causing data loss and corruption; e.g., see [1]. This relates to HDD system’s ability to detect
the occurrence of disturbances and then to suspend reading/writing operation. One way is to
apply a feedforward controller to compensate the disturbances measured by an accelerometer
where phase shift of accelerometer associated with phase delay correction is used to measure
disturbances; e.g., see [2]. This method has been effective in improving tracking accuracy of
the HDD. Also, dual piezoelectric accelerometers has been used to measure angular acceleration
when compensating disturbance effects in the HDD; see [3]. Despite the fact that the dual
accelerometers may have varying sensitivity, the latter method has performed satisfactorily in
rejecting rotational disturbances.

In addition to disturbance perturbation, track misregistration may also become an important
concern when operating the HDD systems. This issue can be addressed by applying a dynamic
output feedback controller for track-following control of a magnetic read/write head in the
HDD systems. Two optimal robust control techniques: mixed H2/H∞ and H2/µ-synthesis
have been proposed in [4, 5] to provide different robustness. The mixed H2/H∞ method
is a controller design method for reconciling performance and robustness against exogenous
disturbances; whereas mixed H2/µ-synthesis is to deal with structured uncertainties; see [4, 5].
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However, these techniques result in the dynamic output feedback controllers which only deal
with norm-bounded uncertainties.

In this paper, a single-stage actuator HDD is considered and represented as a linear time-
invariant uncertain system. Uncertainties of the HDD system considered consist of uncertain
parameters and high-order dynamics. The uncertainties are required to satisfy integral quadratic
constraints (IQC), which are suitable to represent nonlinear time-varying dynamic uncertainties
including the norm-bounded uncertainties; see [6]. This representation leads to the application
of an IQC-based robust H∞ control method to achieve a stable closed-loop HDD control system
with a specified disturbance attenuation level; e.g., see [7]. In this method, a set of scaling
constants is applied to convert a robust H∞ control problem with IQC into a standard H∞

control problem; see [7]. A solution the latter problem involves stabilizing solutions to a pair
of algebraic Riccati equations parameterized by the scaling constants. Thus, the resulting
stabilizing solutions are then used to synthesize an output feedback robust H∞ controller having
the same order as that of the HDD model.

To obtain the desired output feedback controller, the given robust H∞ control problem is
transformed into a nonlinear optimization problem with nonconvex constraints and is then
solved using an evolutionary optimization approach; see [8]. This approach is realized using
a differential evolution (DE) algorithm as presented in [9, 10]. It has been shown in [8] that
this approach is effective in handling such a nonlinear optimization problem with nonconvex
constraints arising from the robustH∞ control problem with IQC. Note that this control problem
is usually difficult to solve using a conventional nonlinear optimization method.

The DE algorithm is chosen because it is more robust against parameter variation and
is simpler in implementation than other types of evolutionary algorithm such as a genetic
algorithm; see [9]. Moreover, the DE algorithm tends to be more reliable and results in a simpler
formulation than an linear-matrix-inequality approach with rank constraints as presented in [11]
although the former algorithm is a heuristic algorithm. These considerations thus lead to the
application of the DE algorithm to solve the robust H∞ control problem for the HDD system
with the evolutionary optimization approach as has also been considered in, for instance, [12].

The rest of this paper proceeds as follows. Section 2 presents the formulation of the robust
H∞ control problem for the HDD system. Section 3 describes the DE approach used to solve the
robust control problem and discusses about the performance of the resulting controller. Finally,
Section 5 presents concluding remarks.

2. Problem Formulation

The single-stage actuator of the HDD system is referred to as a voice coil motor (VCM) actuator
which exhibits dynamical characteristics of double integrators with high-frequency resonance
modes. According to [13], the dynamics of the VCM actuator can then be represented by a
transfer function as follows:

Gv(s) =
kvky
s2

4
∏

i=1

Gvi(s) (1)

where ky is a position measurement gain and kv = kt/m with kt is a current-force conversion
coefficient and m is the mass of the VCM actuator. Each Gvi(s) is a second-order transfer
function having eigenvalues with negative real parts and thus, it is stable. The product of all
Gvi(s) then results in an eighth-order transfer function which only significantly represent the
VCM actuator’s dynamics in a high-frequency region, which may be beyond the operational
frequency range of the VCM actuator. Although the transfer function (1) does not represent
nonlinear dynamics of the VCM actuator due to mechanical friction, it is sufficient for linear
controller design.
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2.1. Nominal plant and uncertain system model

For the purpose of designing the robust H∞ controller as mentioned in Section 1, the VCM
actuator can nominally be modeled as a linear system with double integrators as follows:

Gv(s) =
kvky
s2

. (2)

In terms of state equations, the transfer function (2) can then be written as follows (see [13]):

[

ẏ(t)
v̇(t)

]

=

[

0 ky
0 0

] [

y(t)
v(t)

]

+

[

0
kv

]

u(t) (3)

where y and v represent the position and the velocity of read/write (R/W) head, respectively;
and u is the actuator (control) input. Thus, in the robust H∞ control framework, the high-
frequency resonance modes and the nonlinear dynamics of the VCM actuator can be considered
as uncertainties. Note that, ky and kv might also be uncertain to some extent.

Based on (3), a linear time-invariant uncertain system to represent the VCM actuator can
be expressed as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +B3ξ(t);

z(t) = C1x(t) +D12u(t);

ζ(t) = Gx(t);

y(t) = C2x(t) +D21w(t) +D3ξ(t) (4)

where

x =

[

y
v

]

; w =

[

w1

w2

]

; ξ =

[

ξ1
ξ2

]

; ζ =

[

ζ1
ζ2

]

;

A =

[

0 1
0 0

]

; B1 =

[

0 0
1 0

]

; B2 =

[

0
6.4013× 107

]

;

B3 =

[

0.5 0
0 0

]

; C1 =

[

1 0
0 0

]

; D12 =

[

0
1

]

; C2 =
[

1 0
]

;

D21 =
[

0 1
]

; D3 =
[

0 0.5
]

; G =

[

0 1
1 0

]

. (5)

In the state equations (4), x ∈ R
2 is the state vector; w ∈ R

2 is the disturbance input; u ∈ R is
the control input; ξ ∈ R

2 is the uncertainty input; z ∈ R
2 is the controlled output; ζ ∈ R

2 is the
uncertainty output; and y ∈ R is the measurement output. Moreover, in order to be admissible,
the uncertainty input ξ(t) and the uncertainty output ζ(t) in (4) are also required to satisfy
integral quadratic constraints as follows (see [7, 6]):

∫

∞

0
‖ξi(t)‖2dt ≤

∫

∞

0
‖ζi(t)‖2dt+ di, for i = 1, 2 (6)

where di ≥ 0.

2.2. The closed-loop HDD control system

For the uncertain system (4), (6), the robust H∞ output feedback controller is of the form

ẋc(t) = Acxc(t) +Bcy(t);

u(t) = Ccxc(t). (7)
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and has the same order as that of the nominal plant (3). The closed-loop HDD control system
is obtained by interconnecting the controller (7) and the uncertain system (4), (6) in order to
achieve absolute stabilization with a specified disturbance attenuation level γ > 0.

The uncertain system (4), (6) is thus said to be absolutely stabilizable with a specified
disturbance attenuation level γ > 0 if there exists an output feedback controller (7) and constants
c1 > 0 and c2 > 0 such that the following conditions hold (see [7]):

(i) For any initial conditions [x(0), xc(0)], any admissible uncertainty input ξ(·) and any
disturbance input w(·) ∈ L2[0,∞), then

[x(·), xc(·), u(·), ξ1(·), ξ2(·)] ∈ L2[0,∞)

and

‖x(·)‖22 + ‖xc(·)‖22 + ‖u(·)‖22 + ‖ξ1(·)‖22 + ‖ξ2(·)‖22
≤ c1

[

‖x(0)‖2 + ‖xc(0)‖2 + ‖w(·)‖22 + d1 + d2
]

. (8)

(ii) The H∞ norm-bound condition is satisfied: If x(0) = 0 and xc(0) = 0, then

J := sup
w(·)∈L2[0,∞)

sup
ξ1(·),ξ2(·)∈Ξ

‖z(·)‖22 − c2[d1 + d2]

‖w(·)‖22
< γ2. (9)

Note that ‖f(·)‖2 denotes the L2-norm of the function f(·), that is ‖f(·)‖22 :=
∫

∞

0 ‖f(t)‖2dt; and
Ξ is the set of all admissible uncertainty inputs ξ1(·) and ξ2(·).

If an absolutely stabilizing controller of the form (7) for the HDD system exists, then the
resulting closed-loop system (as illustrated in Figure 1) can be written as follows:

[

ẋ(t)
ẋc(t)

]

=

[

A+B3∆G B2Cc

BcC2 +BcD3∆G Ac

] [

x(t)
xc(t)

]

+

[

B1

BcD21

]

w(t);

z(t) =
[

C1 D12Cc

]

[

x(t)
xc(t)

]

(10)

where

∆ =

[

∆x 0
0 ∆y

]

; ∆x,∆y ∈ R. (11)

Note that ξ(t) = ∆ζ(t); and ‖∆‖2 ≤ 1, where ‖ · ‖ is an induced matrix norm.

Figure 1. A closed-loop control system of the HDD with a single-stage VCM actuator.
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3. Synthesis of the Robust H∞ Controller

Synthesizing the robust H∞ controller (7) for the uncertain system (4), (6) involves stabilizing
solutions to a pair of parameterized algebraic Riccati equations presented as follows (see [7, 14]):

(A−B2E
−1
1 D̂′

12Ĉ1)
′X +X(A−B2E

−1
1 D̂′

12Ĉ1)

+X
(

B̂1B̂
′

1 −B2E
−1
1 B′

2

)

X + Ĉ ′

1(I − D̂12E
−1
1 D̂′

12)Ĉ1 = 0; (12)

(A− B̂1D̂
′

21E
−1
2 C2)Y + Y (A− B̂1D̂

′

21E
−1
2 C2)

′

+ Y
(

Ĉ ′

1Ĉ1 − C ′

2E
−1
2 C2

)

Y + B̂1(I − D̂′

21E
−1
2 D̂21)B̂

′

1 = 0 (13)

where

B̂1 =
[

γ−1B1
√
τ1

−1B31
√
τ2

−1B32

]

; D̂21 =
[

γ−1D21
√
τ1

−1D31
√
τ2

−1D32

]

;

Ĉ1 =





C1√
τ1G1√
τ2G2



 ; D̂12 =





D12

0
0



 ; E1 = D̂′

12D̂12; E2 = D̂21D̂
′

21. (14)

Note that τ1 > 0, and τ2 > 0. In this regard, the solutions to the Riccati equations (12) and
(13) are required to be positive definite, that is, X > 0 and Y > 0.

Solving the Riccati equations (12) and (13) tends to be challenging as their coefficient matrices
are parameterized, and thus, lead to a nonconvex robust H∞ control problem. Such a problem is
considered to be difficult to solve using a conventional nonlinear optimization or an LMI-based
approaches commonly used in robust H∞ control applications. This concern thus becomes an
underlying motivation to apply an evolutionary optimization method based on the DE algorithm
(see [9, 10]) in order to find the solutions to the Riccati equations (12) and (13); see [8]. In this
case, the given robust H∞ control problem has to be transformed into a nonlinear constrained
optimization problem describe as follows:

min
γ,τ1,τ2∈R+

f(γ) (15)

subject to the Riccati equations (12) and (13), and the stability of the resulting closed-loop
system (10). Here, f(γ) is a polynomial function of γ (for instance, f(γ) = γ2) and is to be
minimized with respect to γ, τ1, and τ2. Note also that R+ denotes the set of positive real
numbers.

Since the DE algorithm is an evolutionary algorithm, it is heuristic and involves cross-over,
mutation, and selection routines which operate on a population of candidate solutions; see [9].
Each candidate solution is evaluated through a fitness test procedure consisting of all constraints
involve in the optimization problem (15), (12), (13), (10). The derivation of the fitness test
procedure then follows the approach presented in [8]. Thus, solving the optimization problem
(15),(12), (13), the controller matrices in (7) can be determined as follows:

Ac = A+B2Cc −BcC2 + (B̂1 −BcD̂21)B̂
′

1X;

Bc = (I − Y X)−1(Y C ′

2 + B̂1D̂
′

21)E
−1
2 ;

Cc = −E−1
1 (B′

2X + D̂′

12Ĉ1). (16)

4. Numerical Results and Discussion

Solving the optimization problem (15), (12), (13), (10) through the DE algorithm implemented
on MATLAB yields the following solution:

γ = 2.7378; τ1 = 0.0012; τ2 = 1.3717. (17)

CUTSE2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 78 (2015) 012029 doi:10.1088/1757-899X/78/1/012029

5



Thus, the resulting robust H∞ controller of the form (7) is given as follows:

Ac =

[

−4.1592× 104 1.0000
1.1383× 109 −2.2409× 107

]

; Bc =

[

4.1604× 104

1.2264× 103

]

;

Cc =
[

−17.7827 −0.3501
]

. (18)

Interconnecting the robust H∞ controller (7), (18) to the uncertain system (4), (6) will then
provide a stable closed-loop system. As an example, for

∆ =

[

1 0
0 0

]

, (19)

the resulting closed loop system (10) is asymptotically stable as its poles λcl are all negative real
numbers which are shown as follows:

λcl =









−2.24086× 107

−0.00415× 107

−0.00001× 107

−0.0221









. (20)
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Figure 2. An open-loop frequency response of the HDD system.

The open-loop and closed-loop characteristics of the HDD control system considered can now
be compared by examining the corresponding frequency responses. From Figure 2, it is apparent
that the magnitude of the open-loop HDD frequency response is relatively large within the low-
frequency range (ω < 0.7 rad/s) and has constant roll-off within the high-frequency range.
This implies that the HDD system significantly amplifies disturbance input signals, which is
undesirable when the R/W head performs track-seeking and track-following operations. This
concern has been addressed through the application of the robust H∞ controller (7), (18) to the
uncertain system (4), (6), which leads to the closed-loop HDD frequency response as depicted in
Figure 3. It is shown that the magnitude of the closed-loop HDD frequency response is relatively
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Figure 3. A closed-loop frequency response of the HDD system.
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Figure 4. An open loop time response of the HDD system.

small within the low-frequency range and has steeper roll-off as the frequency getting higher.
This implies that the robust H∞ controller (7), (18) is effective in attenuating the disturbance
input signals in the whole range of frequency, and thus the the closed-loop HDD system is
absolutely stabilized.

Simulated open-loop and closed-loop time responses shown in Figure 4 and Figure 5
respectively confirm the open-loop and closed-loop characteristics of the HDD control system.
In Figure 4, it is evident that the R/W head displacement of the open-loop HDD system
continuously grows although the accelerating disturbance input has ceased. This is due to
the fact that the nominal HDD system (2) has double integrators. Meanwhile, as shown in
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Figure 5. A closed loop time response of the HDD system.
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Figure 6. A control input u(t) of the HDD system.

Figure 5, when the accelerating disturbance input has stopped perturbing the HDD system, the
R/W head displacement of the closed-loop HDD system continuously decreases toward a much
smaller magnitude than that of the open-loop HDD system. Moreover, Figure 6 also shows
that the robust controller (7), (18) is efficient and has spent sufficiently small effort in order
to absolutely stabilize the closed-loop HDD system perturbed by the accelerating disturbance
input.
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5. Conclusion

In this paper, the IQC-based robustH∞ control problem for the HDD system has been presented.
From the frequency and time responses, it has been shown that the resulting robust controller
has been effective in absolutely stabilizing the closed-loop HDD system while attenuating any
exogenous disturbance inputs perturbing the HDD system. Such a controller can be synthesized
by using the stabilizing solutions to the pair of parameterized algebraic Riccati equations. Since
the control problem considered is numerically nonconvex, the DE algorithm has been employed
to solve the Riccati equations. Moreover, as a future research direction, a tracking control
problem for the HDD system can be considered by extending the current results.
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