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Abstract. The isothermal formation of secondary phases in duplex stainless steel was studied. 

Samples were isothermally heat treated (aged) at temperatures of 700, 800 and 850°C in a 

quenching dilatometer. Microstructured evolution of secondary phases was analysed by means 

of optical and scanning electron microscopes. Both common phases, Chi and Sigma, were 

observed. The resulting shrinkage curves from dilatometric measurements show the potential 

for research into the formation of minor phases and the estimation of transformation kinetics in 

this kind of steel. 

1.  Introduction 

The duplex family of stainless steels (DSS) is composed of a mixture of ferrite and austenite and 

combines some typical properties of each of these phases. The duplex microstructure and chemical 

composition lead to high strength and good resistance to corrosion, abrasion and wear [1]. Different 

grades of DSS are increasingly used to store and transport highly corrosive fluids and gases in a wide 

range of industry sectors. A further enhancement to the mechanical properties and corrosion resistance 

of DSS can be achieved by the addition of various alloying elements, such as chromium, nickel, 

molybdenum, tungsten, nitrogen etc [2]. 

However, this alloying could also lead to microstructure or phase instability and thus to matrix 

depletion of the main alloying elements (e.g., chromium, molybdenum, and niobium) connected with 

the formation of secondary phases at high temperatures associated with processing forging, heat 

treatment or during the service itself. Several precipitation reactions usually occur when this steel is 

exposed in the specific temperature range. Usually it is between 600 and 1300°C. It especially leads to 

the precipitation of secondary phases:  - Chi,  - Sigma, carbides and nitrides [2]. Of all these phases, 

the Sigma phase is the most important, as its formation is accompanied by a decrease in ductility and 

toughness, especially if these are measured at normal temperatures. It is an intermetallic compound 

with a tetragonal crystal structure. In the mixture with the alpha phase, the Sigma phase contains 

between 20 and 70 wt. % chromium at relatively long thermal exposure times in the interval between 

500 and 900°C. It is possible to put the resulting Fe-Cr Sigma phase into solid solution using short-

time heating (for 1 hour or more). Fe-Cr alloys with manganese, nickel and molybdenum require 

longer times or higher temperatures for the Sigma phase to dissolve [3]. 

In recent years, great effort has been devoted to research into the precipitation of the Sigma phase 

and Chi phase in duplex steels. In general, the Sigma phase is considered undesirable as it depletes the 

                                                      
1
 Address for correspondence: P Podany, COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany, Czech 

Republic. E-mail: pavel.podany@comtesfht.cz. 

4th Global Conference on Materials Science and Engineering (CMSE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 103 (2015) 012021 doi:10.1088/1757-899X/103/1/012021

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



matrix of chromium. This depletion impairs the material’s resistance to pitting corrosion. On the other 

hand, presence of the Sigma phase increases the creep resistance of the material [4]. 

The research into precipitation of the above phases focused on how some alloying elements 

suppress this precipitation during annealing. For instance, Kang, et al. showed that substituting part of 

the molybdenum content with tungsten suppresses precipitation of the Sigma phase. Like 

molybdenum, tungsten is known to improve resistance to pitting corrosion [5, 6]. Akisanya, et al. 

studied super duplex steels with increased tungsten content. They explored the effect of age hardening 

on mechanical properties [2]. Other studies indicate that adding a small amount of cerium helps to 

suppress the precipitation of secondary phases. Kim S, et al. has proven that adding 50-100 ppm 

cerium inhibits precipitation of the Sigma and Chi phases. If the cerium content is increased to 450 

ppm, it merely leads to the formation of cerium-rich particles and the depletion of cerium in the 

matrix. In such case, cerium cannot suppress the precipitation [7]. Similarly, Yoo Y H, et al. studied 

the effects of alloying with cerium and other rare earth elements, lanthanum and barium [8]. 

According to Jeon S H, et al., another element that suppresses precipitation of the Sigma phase is 

copper. According to their results, adding approx. 1.30% copper practically eliminates precipitation of 

the Sigma phase and causes a slight increase in precipitation of the Chi phase. Despite that, the 

resulting total amount of secondary phases is smaller than without the addition of copper [9, 10]. As 

the above studies show, the precipitation of undesirable phases can be effectively controlled by adding 

some elements to the material. Despite that, designers are frequently required to use a particular 

commercially available grade of material specified by clients. It is, therefore, important to know the 

temperature ranges and heat treating sequences which lead to the precipitation of unwanted phases that 

can substantially alter the corrosion resistance, as well as the mechanical properties of the material. In 

the presented paper, the authors used a quenching dilatometer to study the precipitation process and to 

carry out the heat treatment. The purpose was to map primarily the initial stages of Sigma phase 

precipitation within three ranges of age hardening temperatures for a particular heat.  

2.  Experimental methods 

2.1.  Experimental material and sampling 

The chemical composition of the experimental material is shown in table 1. The material was supplied 

in the form of forged pieces of 120 × 120 mm cross-section. Specimens were taken from the forged 

pieces for dilatometric measurement. The diameter and length of these specimens were 4 mm and 10 

mm, respectively. After dilatometric measurement, these specimens were used for making longitudinal 

metallographic sections. As the other authors of research institute showed earlier [11], these specimens 

can also be used for making miniature mechanical testing specimens. 

Table 1. Chemical composition (wt %) of experimental steel. 

C Si Mn P S Cu Cr Ni Mo Ti W N Fe 

0.032 0.316 1.449 0.017 0.007 0.084 21.771 5.660 3.138 0.002 0.023 0.135 bal 

2.2.  Dilatometric experiments 

Samples with a length of 10 mm and a diameter of 4 mm were heat treated in the quenching 

dilatometer Linseis L78 RITA. The temperature was measured and controlled by a type K 

thermocouple, welded to the sample centre. The length change was measured by an LVDT sensor 

through a quartz push-rod. The dilatometric measurements were performed in a protective 

environment (He). Heating was performed using an inductive coil. The sample was cooled with 

protective gas. Prior to heat treatment, the sample chamber was refilled (evacuated and filled with He 

gas) three times. The samples were solution annealed at 1100°C for 1 hour, quenched at the rate of 

180°C/s and aged at 700°C, 800°C and 850°C. 

2.3.  Characterisation of microstructure and phases 
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The microstructure was studied on the metallographic sections through the dilatometer specimens. The 

microstructure was revealed using two-phase electrolytic etching. The first stage involved a voltage of 

5.5 V applied for 20s in combination with 10% oxalic acid. In the second stage, a voltage of 2.3 V was 

used for 8 s with 20% NaOH. In the first stage, the precipitates are attacked. In the second stage, the 

ferrite becomes coloured. The microstructure was documented using a Zeiss Axio Observer optical 

microscope. Specimens for scanning electron microscopy were etched with Beraha's reagent. 

Quantitative image analysis was carried out using NIS-Elements software. EBSD analysis was 

performed and scanning electron micrographs taken by means of JEOL 6380 and JEOL 7400F 

microscopes and an HKL Nordlys EBSD (Electron backscatter diffraction) camera from Oxford 

Instruments.  

3.  Results and discussion 

3.1.  Evolution of microstructure during aging 

The as-received microstructure of the forged stock is shown in Fig. 1. In the micrograph, ferrite 

appears dark, whereas austenite appears bright. The quantitative analysis of phases by means of the 

NIS Elements software showed a ferrite fraction of 49.6%. No intermediate phases were found in the 

as-received microstructure. The same applies to the microstructure of solution-annealed specimens 

(Figs. 1(a) and 1(b)). 

  
(a) As-received state (forged)-2-phase electrolytic 

etching 

(b) After solution annealing-2-phase electrolytic 

etching 

Figure 1. Microstructure of analysed duplex steel. 

The microstructure evolution with the increasing holding time at 800°C is illustrated in Figs. 2(a)-

2(d). As these figures show, the amount of the Chi and Sigma phase increases with increasing 

annealing time (see Figs. 2(a)-2(c)) up to 16,000s. When the Sigma phase is developed, the Chi phase 

starts to transforms into the Sigma phase and the amount of the Chi phase decreases (compare Figs. 

2(c) and 2(d)). This assumption has been confirmed by other studies, as well [12]. 

Several basic shapes of intermediate phase particles were found in the microstructures. The Chi 

phase occurs first on grain boundaries at the ferrite-austenite interface. Later, it can be found on grain 

boundaries within the ferrite. Its particles are of irregular shape and sometimes elongated. They appear 

light grey in backscattered electron micrographs. This is due to the higher level of molybdenum than 

in the Sigma phase. The Sigma phase appears dark grey (2). According to other authors, chromium 

carbonitrides often precipitate together with the Chi phase [13-14]. This seems to be confirmed by 

figure 3. It shows very small precipitates on grain boundaries in a specimen annealed at 850°C for 107 

seconds. Due to their size, their chemical composition could not be measured using EDX. 

The Sigma phase occurs both in the interior of the original ferrite grains and as precipitates within 

the Chi phase particles which are found on the grain boundaries [12]. For the purpose of monitoring 

the precipitation of various phases and carbonitrides in steel, the use of electrolytic etching with oxalic 

acid has proven very useful. It is clear that even those particles which are too small to be resolved by  
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(a) (b) 

  
(c) (d) 

Figure 2. The microstructure of the experimental steel after ageing at 800°C for (a) 1000s, (b) 

3,600s, (c) 16,000s, and (d) 230,000s. 

 

Figure 3. Sample aged at 850°C for 107s – precipitation of Chi or CrC(N). 

scanning electron microscopy can initiate a very vigorous reaction between the etchant and the 

specimen surface, leading to an intensive attack on the particle and its immediate vicinity. For 

illustration, optical micrographs of specimens etched with oxalic acid and backscattered scanning 

electron micrographs of identical polished specimens are shown in Figs. 4(a) and 4(b). Using 

specimens etched with oxalic acid to document microstructure by means of scanning electron 
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microscopy is not useful, as the Chi phase, carbonitrides and other phases are completely etched away 

by the electrolyte. 

  
(a) BSE signal on SEM (b) Two-phase electrolytic etching 

Figure 4. Microstructure of sample aged at 700°C for 156s. 

3.2.  EBSD analyses 

Fig. 5 shows an EBSD (Electron backscatter diffraction) micrograph of the steel sample aged at 800°C 

for 16,000 s. The Sigma phase (coloured yellow in Fig. 5(b)) was clearly detected. The Chi phase is 

difficult to distinguish (by EBSD) between the ferrite and austenite because it has a cubic lattice [14]. 

  

(a) Band contrast 
(b) EBSD mapping (Sigma - yellow, ferrite – 

red, austenite – orientfigation) 

Figure 5. EBSD microstructure of sample aged at 800°C for 16,000s. 

 

Figure 6. Shrinkage of the samples during ageing. 
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3.3.  Dilatometric curves 

During isothermal ageing in the dilatometer, shrinkage of all samples was observed. However, the 

length change at 700°C differs from the length change at 800°C and 850°C (figure 6). This behaviour 

might be attributed to different equilibrium phase ratios and ageing kinetics. Similar conclusions were 

stated in [13-16]. The initial length increase at 700°C might be attributed to the transport of the 

alloying elements to future nucleation sites. According to SEM observation, the first rapid decrease in 

length is a result of the formation of austenite, carbides and nitrides. Nucleation of the Chi and Sigma 

phases is expected to follow, leading to less shrinkage because the contraction during the phase 

formation at the interface is compensated by transport of the alloying elements. As the Sigma phase 

grows into ferrite grains, the shrinkage decreases even more. Formation of the Chi and Sigma phases 

cannot be distinguished from each other, although their formation kinetics is obvious from the curves. 

The most visible differences between the kinetics relate to nitride and Sigma/Chi formation at 700°C. 

The nucleation phase was estimated for all temperatures. The final phase of the ageing process was 

estimated for 800°C and 850°C. The estimated Chi and Sigma phase formation start and end times are 

listed in table 2. 

Table 2. Estimated start and end of Chi and Sigma formation. 

Temperature [°C] Chi/Sigma formation start [s] Chi/Sigma formation end [s] 

700 2500 - 

800 151 120,000 

850 107 48,000 

4.  Conclusion 

According to the results presented here, a quenching dilatometer can be used not only for precise heat 

treatment, but also for research into the formation of minor phases and estimation of transformation 

kinetics in duplex steels. The formation of precipitates led to contraction. The length change, which 

reflects the transformation kinetics, has a typical “S shape” in the logarithmic time graph. Although 

the early stage of Chi and Sigma precipitation could not be determined by SEM, a future TEM 

investigation might confirm the nucleation start identified by means of a dilatometer. 

Very early stages of precipitation of undesirable phases can be observed using optical microscopy 

and specimens following electrolytic etching with oxalic acid. For instance, the Chi phase becomes 

fully discernible using the backscattered electron mode in scanning electron microscopy only after the 

specimens have been isothermally held for an extensive period of time, although evidence from both 

electrolytically etched specimens and dilatometric curves shows that precipitation occurs earlier. 
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