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Abstract. Friction stir welding (FSW) is a relatively new solid-state joining technique that is 

widely adopted in manufacturing and industry fields to join different metallic alloys that are 

hard to weld by conventional fusion welding. Friction stir welding is a very complex process 

comprising several highly coupled physical phenomena. The complex geometry of some kinds 

of joints makes it difficult to develop an overall governing equations system for theoretical 

behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by 

welding effective parameters, and the experiments are often time consuming and costly. On the 

other hand, employing artificial intelligence (AI) systems such as artificial neural networks 

(ANNs) as an efficient approach to solve the science and engineering problems is considerable. 

In present study modeling of FSW effective parameters by ANNs is investigated. To train the 

networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the 

networks are developed based on back propagation (BP) algorithm. ANNs testing are carried 

out using different experimental data that they are not used during networks training. In this 

paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and 

tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile 

strength and hardness of welding zone are gathered as outputs of neural networks. According 

to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile 

strength and notch-tensile strength have the least mean relative error (MRE), respectively. 

Comparison of the predicted and the experimental results confirms that the networks are 

adjusted carefully, and the ANN can be used for modeling of FSW effective parameters. 

1.  Introduction 

The AA7075-T6 aluminum alloy is one of the strongest nonferrous metals, used in various industries 

nowadays. High strength-to-weight ratio and its property of natural aging have led to the ever-growing 

use of this aluminum alloy in aerospace and high-tech industries. 

7XXX series aluminum alloys are typically composed of zinc (Zn), magnesium (Mg), and copper 

(Cu) elements combined with aluminum (Al) as the predominant metal. The superior strength of this 

aluminum alloy is due to the presence of the above-mentioned alloying elements [1]. The existence of 

these elements in the composition of this aluminum alloy has led to the formation of AL2CuMg and 

Mg2Zn phases in the final structure. The reason for overall strength of this structure is existence of 
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such phases [2]. The simultaneous appearance of copper and zinc increases strength, but also reduces 

the weld ability of this structure. 

There are many articles that investigate AA7075 behavior in different conditions. Much of these 

articles are the studies about the investigation of mechanical properties, metallurgical properties, how 

to the crack growth, fatigue behavior, fatigue life and its increasing methods [3-7]. Majzoobi, et al. [8-

10] surveyed the fretting fatigue behavior of Al7075-T6 considering the effects of coating and 

temperature in their work. 

Due to having the aforementioned elements (Zn, Cu, Mg and Al) in their structure, 7XXX series 

aluminum alloys are highly sensitive to heat cracking in the freezing process and also to liquation 

cracking in the heat effected area [1, 2]. Moreover, the probability of zinc oxidation or evaporation 

during fusion welding of these alloy types, can be the main reason of serious problems, such as 

porosity or partial melting [11]. Low boiling temperatures of some elements in the structure, namely 

zinc and magnesium, often cause numerous problems in laser beam welding [12, 13]. 

Friction stir welding (FSW) is one of the non-fusion techniques of welding which has eliminated 

many of the defects associated with fusion welding techniques in aluminum alloy joints. In the process 

of friction stir welding, a tool creates frictional heat by moving along the joint line of two plates and 

rotating, simultaneously. It eventually creates a joint from the plasticized material. The process of 

welding by the FSW technique has various effective parameters including welding speed, rotational 

speed and axial force of the tool, tool hardness, and sizes of pin and shoulder. 

Many experimental works have been done to study the usage of FSW on AA7075-T6 and 

investigate its parameters and characteristics. These works have survived the effect of welding 

parameters on microstructure, thermal, mechanical and metallurgical properties of AA7075-T6 welded 

joints in various conditions [14-19]. Azimzadegan, et al. [20] have investigated the effects of high 

rotational speeds. Rajakumar, et al. [21] and DebRoy, et al. [22] have studied the effect of tool in 

friction stir welded joints. Bahrami, et al. [23] have explored this process on AA7075-T6 in nano-

scale.  

In the case of modeling and simulation of FSW process, it can be noted to applications of 

numerical methods and the heuristic algorithms, which are the most-used methods in simulating and 

optimizing this process. The finite element method (FEM) as the most common numerical method and 

the simulated annealing (SA) algorithms and artificial neural networks (ANN) as heuristic algorithms 

have been widely employed in the simulation of FSW process. Fratini, et al. [24-26] havw provided 

the FEM models of FSW in their studies. He, et al. [27] have reviewed the numerical analysis of 

friction stir welding in their work. 

Some works have employed heuristic algorithms for simulation of FSW; Babajanzade Roshan, et 

al. [28] have used the adaptive neural fuzzy inference system (ANFIS) models and SA algorithm to 

optimize friction stir welding process of AA7075 and achieve desirable mechanical properties. As 

mentioned, the ANNs have also been used in predicting and obtaining optimum parameters in the 

process of friction stir welding. Specifically, in the context of employing the artificial neural networks 

in predicting and optimizing the FSW process, in addition to how the network trained, the main 

difference is in the inputs and outputs of neural network that they have been regarded to training 

networks. Okuyuca, et al. [29] have evaluated the ability of neural networks in predicting the 

parameters of friction stir welding for aluminum plates. In their study, they took the parameters of 

welding speed and rotational speed of the tool as network inputs, and the parameters of yield strength, 

ultimate length variation of specimens, and ultimate strength of the weld as network outputs. 

Eventually, the results of their work showed an acceptable correspondence between the results of the 

neural network and those of experimental tests. In a similar study, Shojaeefard, et al. [30] have 

predicted the mechanical properties of non-cognate friction stir welding on AA5083 and AA7075 

aluminum alloys. In their study, they used the speeds of welding and tool rotation as the inputs of the 

neural network and the final mechanical and metallurgical properties of the weld as the outputs of the 

neural network. In the end, the results of their work, likewise, showed proper abilities of neural 

networks for predicting the parameters of FSW process. Similarly, Yousif, et al. [31] have regarded 

4th Global Conference on Materials Science and Engineering (CMSE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 103 (2015) 012034 doi:10.1088/1757-899X/103/1/012034

2



the welding speed and rotational speed as inputs and the tensile strength, yield strength and elongation 

as outputs in simulation of the FSW parameters on aluminum alloy plates. Lakshminarayanan, et al. 

[32] gathered the welding speed, rotational speed and axial force as inputs and tensile strength as an 

output to survey the FSW on AA7039. Ghetiya, et al. [33] have considered tool shoulder diameter, 

welding speed, rotational speed, and axial force as inputs whereas the output of their modeling is the 

tensile strength of AA8014 welded joint. For better comparison, the used inputs and outputs of 

aforementioned studies about ANN application (references [29-33]) have been shown in table 1. 

Table 1. The used inputs and outputs of previous works [29-33]. 

Reference No. Inputs Outputs 

29 Welding speed 

Rotational speed 

Yield strength 

Length variation 

30 Welding speed 

Rotational speed 

Tensile shear force 

hardness 

31 Welding speed 

Rotational speed 

Tensile strength 

Yield strength 

Elongation 

32 Welding speed 

Rotational speed 

Axial force 

Tensile strength 

 

33 Welding speed 

Rotational speed 

Axial force 

tool shoulder diameter 

Tensile strength 

As the table 1 illustrates, the authors have regarded 2-4 inputs and 1-3 outputs in their works, while 

the influential parameters of friction stir welding are much more; among which tool hardness and tool 

pin diameter can be mentioned as inputs. Similarly, the notch-tensile strength can be considered as 

output. Although using fewer parameters makes the network training process faster and gives more 

accurate answers, it simultaneously makes the neural network responses more unrealistic in examining 

parameters of friction stir welding. Accordingly, this study tries not to ignore any of the influential 

parameters of the process, while lowering the error of network answers to its minimum by applying 

correct and proper values for neural networks structures. In this paper, six parameters including: 

welding speed, rotational speed of tool, axial force, shoulder diameter, pin diameter and tool hardness 

regarded as inputs of the ANN. Furthermore, four parameters including: yield strength, tensile 

strength, notch-tensile strength and hardness of welding zone gathered as outputs of ANN. 

 

Figure 1. A Schematic of FSW. 

2.  Friction stir welding 

Friction stir welding was invented by England’s The Welding Institute (TWI) in 1991 [34]. Figure 1 
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shows the tools sample and a piece being welded by FSW. 

In the process of friction stir welding, a tool creates frictional heat by moving along the joint line of 

two plates and rotating simultaneously and eventually creates a joint from the plasticized material 

[35]. 

As figure 1 demonstrates, the process of welding by the FSW technique has various effective 

parameters. These parameters are including the welding speed, rotational speed and axial force of the 

tool, tool hardness and sizes of pin and shoulder. Defects in the joints created by this technique are due 

to behavior of the material when it flows under welding. The material flow is in turn under the 

influence of the mechanical properties of the material and the tool, and the effective parameters of 

friction stir welding. Using friction stir welding eliminates the difficulties of fusion welding and also 

reduces residual stress and distortion created in the welding process [36, 37]. Table 2 presents the 

effective parameters in the process of friction stir welding and their mechanisms of influence. 

Table 2. Parameters of friction stir welding and their influence mechanisms. 

Welding Parameter Influence Mechanism 

Welding Speed As the welding speed increases, higher work hardening is done on 

the joint area. 

Rotational Speed An increase in the rotational speed, increases the created heat and the 

intensity of stir. 

Axial Force Based on the equation f=µk Fn,, as the axial force increases, friction 

increases as well, and consequently, the created heat is increased. 

Tool Hardness As the tool hardness increases, the friction coefficient between the 

tool and the material is increased. According to the equation f=µk Fn, 

this leads to an increase in the created friction and heat. 

Tool Geometry An increase in the size of pin and shoulder, increases the contact area 

between tool and material. As a result, friction and heat are increased 

while the tool is rotating. 

Investigation of welding zone and its surrounding microstructure areas demonstrate that the FSW 

process in welding zone affects its near areas. Figure 2 shows the typical friction stir weld in its cross-

section, consisting of four main zones [38]: 

 

Figure 2. Typical friction stir weld in its cross-section. 

 Weld Nugget (WN): stirring zone by pin rotation, fully recrystallized area.  

 Heat Affect Zone (HAZ): material zone which is close to welding area, have a thermal effect 

but no plastic deformation.  

 Thermo-mechanically Affected Zone (TMAZ): transition zone between HAZ and WN that 

have plastic deformation without recrystallization and thermal effect (It is usually difficult to 

distinguish the precise boundary between TMAZ and nugget). 

 Base material (BM): the material zone that is remote from the welding area. It nearly keeps the 

original microstructure and mechanical properties. 

4th Global Conference on Materials Science and Engineering (CMSE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 103 (2015) 012034 doi:10.1088/1757-899X/103/1/012034

4



Studying the influence mechanisms of the parameters, one can conclude that an increase in any of 

the parameters enhances the flow of material as a result of the heat increase. However, since other 

factors, such as the reduction of cooling rate due to the temperature rise at the beginning of the 

process, cannot be ignored, joint properties do not necessarily improve. It can be seen that at first 

increasing each of the parameters improves mechanical and metallurgical properties of the joint, and 

after reaching the optimum value, any further increase causes a decline in the properties.  

It is observed that grain size reaches its lowest point under 5kN force, where mechanical properties 

are determined based on Hall-Petch equation, which is a relation between yield stress and grain size. 

Hall-Petch equation has been determined as follows [39]: 

σy = σ0 + ky /d 
½  

                                                               (1) 

Where σy is the yield stress, σo is material constant for the starting stress of dislocation movement, ky is 

strengthening coefficient and d is average grain diameter. 

3.  Artificial neural networks 

Artificial neural networks (ANNs) have found applications in many optimization and prediction 

problems in the last decade. ANNs are computational models inspired by an animal’s central nervous 

system, in particular the human’s brain, which is capable of machine learning as well as pattern 

recognition [40]. ANN obtains a nonlinear relation among the influential factors of a process and their 

corresponding outputs that, in this study, are mechanical and metallurgical properties of a joint. 

Therefore, a neural network enables the researcher to determine outputs for other arbitrary inputs with 

high accuracy. Employing ANN eliminates any need to carry out experimental tests that are costly and 

time-consuming. These networks are essentially simple mathematical models defining a function f: x 

→ y or a distribution over x or both x and y. 

Figure 3 represents a neural network. In this network, each input consists of r parameters and each 

output comprises s parameters. Furthermore p, w, b, f and a represent the inputs, weight matrixes, bias 

vectors, transfer function in neurons, and outputs, respectively.  

 

Figure 3. One layer network with R inputs and S neurons. 

Based on their functions, neural networks need to be trained using a set of inputs and their 

corresponding outputs. Assuming one layer of neuron, training is accomplished through multiplying 

each input with a variant called the weight and summing it with another variant called bias before 

entering the neuron. The initial value of both variants can be predetermined. The obtained values from 

each input are summed up to form the input of the transfer function, and its output is the neuron’s 

output that needs to compare with the experimental output value. The tangent sigmoid (Tansig) 𝜙(x), 

logarithmic sigmoid (Logsig) ψ(x) and linear χ(x) transfer functions are described as follows [41]: 

  1
1

2
2





 xe
x                                                                   (2) 

4th Global Conference on Materials Science and Engineering (CMSE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 103 (2015) 012034 doi:10.1088/1757-899X/103/1/012034

5



 
xe

x



1

1
                                                                    (3) 
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Through the comparison, an error value is obtained. If it exceeds the permissible error value, the 

obtained answer is returned to the network for corrections in the weights and biases values until the 

desired answer is obtained. The network described above consists of one layer of neurons; however, in 

practice more neurons are needed to interact in parallel constructions to implement a neural network. 

Neural networks compose of several layers containing the neurons. 

3.1.  Training of ANN 

The ANNs are trained with a training set of input and known output data. There is no exact available 

formula to decide what architecture of ANN and which training algorithm will solve a given problem 

and the best solution is obtained by trial and error. In the present study, the feed forward error back 

propagation (BP) algorithm is used for ANN training, which is the most common and efficient 

algorithm for training. The BP algorithm defines a systematic way to update the synaptic weights of 

multi-layer feed forward supervised networks. The networks composed of an input layer that receives 

the input values, an output layer, which calculates the neural network output, and one or more 

intermediary layers, so-called hidden layers. The basis of BP supervised learning process, is the 

gradient descent method that usually minimizes the sum of squared errors between the target value and 

the output of the neural network [42]. 

3.2.  Implementation of ANN 

In the implementation of ANN, there are many parameters that changing them causes alteration of the 

operation method, speed and accuracy of the network [42]. The number of ANN layers, the number of 

each layer neurons and rate of network training are some of these parameters [43]. Number of ANN 

layers and neurons of each layer are important parameters in deployment of ANN, since they are so 

effective in its operation. The significant point in using ANN is the number of layers and neurons, 

which are processing units of network. Increasing these parameters does not necessarily lead to speed 

and accuracy improved. The more complex the structure of the network is, the more time it takes. 

Although training time may be reduced by increasing the rate of training, if it is lower than a specific 

limit, speed of the network to find desirable answer will be reduced or if it is higher than a specific 

limit the network will become unstable. Furthermore, a considerable point in the training of the 

network is scattering rate of input and output parameters. If scattering of parameters is high, the 

network will be in trouble. In such cases by employing reasonable changes in the data, scattering is 

decreased and problem is resolved. In this research all values of each parameter are divided to 

maximum value of that parameter and normalized [44]. This action decreases scattering rate and 

distribution of all values between 0 and 1. 

In this paper, welding speed, rotational speed of tool, axial force, shoulder diameter, pin diameter 

and tool hardness regarded as inputs of ANN. Yield strength, tensile strength, notch-tensile strength 

and hardness of welding zone considered as outputs of neural networks. Figure 4 represents an 

example of the conceptual structure for this ANN: 4 layers with full interconnection. Six input 

parameters are logged into input layer to determine four outputs. 

3.3.  Performance evaluation of ANN 

The performance of the ANN models in predicting the FSW effective parameters are statistically 

evaluated using prediction score metrics. A large number of statistical criteria are available to compare 

the adequacy of any given model. The performance evaluation statistics used for ANN training in the 

present study are Pearson coefficient of correlation (PCC) and mean relative error (MRE). These 

parameters have been determined using the following equations: 
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Figure 4. An example of the conceptual structure for a network. 
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3.4.  Generating model function 

After the neural network is trained successfully with four layers as it is mentioned above, the values of 

the four parameters of the network (p, b, w, and f) can be obtained. The function which correlates the 

inputs to the corresponding outputs can be calculated applying the aforementioned parameters. Finally, 

the model function can be determined as below: 

a 
1
= f 

1
(w 

1
p+b 

1
)     

(7) 
a 
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(w 

2
p 

1
+b 

2
) 

a 
3
= f 

3
(w 

3
p 

2
+b 

3
)   

a 
4
= f 

4
(w 

4
p 

3
+b 

4
)   

G (g(1), g(2), g(3), g(4))= a 
4
= f 

4
(w 

4
f 

3
 (w 

3
f 

2
(w 

2
f 

1
(w 

1
p+b 

1
)+ b 

2
) +b 
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4
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Where a
1
, a

2
 and a

3
 are outputs of the first, second and third layer, respectively. a

4
 is the fourth layer 

output which is equal to the function G(g(1), g(2), g(3), g(4)). The function G gets the values of six 

input parameters: welding speed, tool rotational speed, axial force, shoulder diameter, pin diameter 

and tool hardness. Functions of g(1), g(2), g(3) and g(4) represent yield strength, tensile strength, 

notch-tensile strength and hardness of welding zone as output parameters, respectively. The 

methodology used for neural network application in this work is as follows: 

 Start 

 Normalize the data (inputs & outputs) 

 Feed the data to artificial neural network 

 Find network optimum parameters 

4th Global Conference on Materials Science and Engineering (CMSE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 103 (2015) 012034 doi:10.1088/1757-899X/103/1/012034

7



 Execute network training 

 Obtain Pearson correlation coefficient 

 If PCC ≥ 0.99 go to 8, if not go back to 4 with revising the parameters of network  

 Continue processing until obtaining desired convergence between experimental and predicted 

values 

 Obtain weights & biases values 

 Create the model function 

 Conduct analysis based on model function 

 Verify the results using experimental values 

 Calculate the error for each answer 

 End 

4.  Experimental tests 

The experimental data obtained from Rajakumar, et al. [45] work. In their study, rolled plates of 

7075-T6 aluminum alloy with the thickness of 5 mm were used. Prior to the welding process, the 

plates were cut to the size of 150×300 mm. The welding was done perpendicular to the rolling 

direction. Welding was carried out in a single pass and with non-consumptive tools of several 

hardnesses. The hardness of tools was determined by quenching them in different materials (water, oil, 

air, and saltwater) in the final step of heat treatment. The chemical composition of the base metal and 

its mechanical properties are presented in tables 3 and 4. The joint dimensions and welding and rolling 

directions are shown in figure 5. Figure 6 shows the tool of FSW process. 

Table 3. Chemical composition of 7075-T6 aluminum alloy (wt %) [45]. 

Material Mg Mn Zn Fe Cu Si Cu Al 

AA 7075-T6 2.1 0.12 5.1 0.35 1.2 0.58 1.2 Balance 

Table 4. Mechanical properties of the AA7075-T6 [45]. 

Material Yield Strength 

(MPa) 

Ultimate Strength 

(MPa) 

Elongation 

(%) 

Vickers Hardness 

(Hv 0.05) 

AA 7075-T6 410 485 12 160 

        

Figure 5. Square butt joint configuration.                           Figure 6. FSW tool. 

After the welding process, the joints were cut and then machined to the desired size. In this study, 

American Society for Testing of Materials (ASTM E8M-04) guidelines was followed for preparing the 

test specimens. Two different tensile specimens were prepared to evaluate the transverse tensile 

properties. The smooth (un-notched) tensile specimens were prepared to evaluate yield strength and 

tensile strength in the cross-sectional area. Notched specimens were prepared to evaluate notch tensile 

strength of the joints. Figure 7 illustrates samples of these specimens with their sizes; figure 7(a)  
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Figure 7. A machined specimens based on the ASTM standard for a) simple-tensile test, b) notch-

tensile test. 

Table 5. Results of experimental tests on thirty different samples [45]. 

Experiment 

No. 

Rotational 

speed 

(RPM) 

Welding 

speed 

(mm/min) 

Axial 

force 

(kN) 

Shoulder 

diameter 

mm 

Pin 

diameter 

mm 

Tool 

hardness 

(HRc) 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Notch-

tensile 

strength 

(MPa) 

Welding 

zone 

hardness 

(VHN) 

1 1400 60 8 15 5 45 314 372 397 203 

2 1800 60 8 15 5 45 310 334 321 185 

3 1400 40 8 15 5 45 279 363 339 194 

4 1400 60 8 15 5 45 310 372 393 198 

5 1400 80 8 15 5 45 308 371 392 197 

6 1400 60 7 15 5 45 282 321 344 180 

7 1400 60 8 15 5 45 314 372 393 199 

8 1400 60 8 12 5 45 280 310 333 193 

9 1400 60 8 15 5 45 310 372 393 198 

10 1400 60 8 18 5 45 256 271 296 197 

11 1400 60 8 15 4 45 292 331 361 194 

12 1400 60 8 15 5 45 310 372 393 198 

13 1400 60 8 15 6 45 300 340 360 197 

14 1400 60 8 15 5 40 261 283 302 186 

15 1400 60 8 15 5 45 313 372 393 198 

16 900 60 8 15 5 45 245 270 310 175 

17 1200 60 8 15 5 45 290 310 360 191 

18 1400 20 8 15 5 45 255 280 320 180 

19 1400 100 8 15 5 45 245 261 283 179 

20 1400 60 6 15 5 45 263 298 320 173 

21 1400 60 10 15 5 45 285 286 356 171 

22 1400 60 8 9 5 45 242 266 284 178 

23 1400 60 8 21 5 45 296 350 312 187 

24 1400 60 8 15 3 45 264 281 302 181 

25 1400 60 8 15 7 45 284 321 346 178 

26 1400 60 8 15 5 33 271 299 324 178 

27 1400 60 8 15 5 56 282 312 336 178 

28 1400 60 9 15 5 45 301 361 383 190 

29 1400 60 8 15 5 50 310 368 391 192 

30 1600 60 8 15 5 45 314 367 397 202 
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shows the smooth tensile specimen and figure 7(b) illustrates the notched specimen. Tensile tests were 

carried out with a 100 kN force and speed of 0.5 mm/min. Vickers micro-hardness tester was used for 

measuring the hardness of the weld metal with a 0.05 kg load. Table 5 presents the results obtained 

from the experimental tests on 30 specimens. 

After the experimental tests, it was observed that increasing the tool rotational speed from 900 

RPM to 1400 RPM improves the mechanical properties of the joint. Value of this parameter faces 

relative decline over 1400 RPM. Moreover, increasing the welding speed from 20 to 60 millimeters 

per minute increases the strength of specimens, and any further rise of this parameter over 60 

millimeters per minute reduces specimen strength. This situation observed for all of the examined 

welding parameters. Optimum values for parameters of rotational speed, welding speed, axial force, 

tool hardness, shoulder diameter, and pin diameter were obtained as 1400 (RPM), 60 (mm/min), 8 

(kN), 45 (HRc), 15 (mm) and 5 (mm), respectively. 

5.  Results and discussion 

In this work there are two main networks: called “training network” and “testing network”. The first 

one is used to generate the model function. The second one used the model function to give the results 

of ANN. In the training network, 15 experimental test results (data of experiments 16-30) are used 

from the total of 30, as data sets to networks training, while in the testing network 15 different 

experimental data ( data of experiments 1-15) which are not used during training, are used as networks 

testing. So the whole experimental results did not include in the training sets for modeling of FSW 

process on Al7075. All the input and output data for training and testing networks are normalized 

between 0 and 1. Table 6 shows the sample data used for networks training. For investigative 

purposes, 50% training data sets against 50% test data sets is obtained. 

Table 6. Normalized samples data used for network training. 

Sample 

No. 

Rotational 

speed 

Welding 

speed 

Axial 

force 

Shoulder 

diameter 

Pin 

diameter 

Tool 

hardness 

Yield 

strength 

Tensile 

strength 

Notch-

tensile 

strength 

Welding 

zone 

hardness 

1 0.50 0.60 0.80 0.71 0.71 0.80 0.7803 0.7258 0.7809 0.8621 

2 0.66 0.60 0.80 0.71 0.71 0.80 0.9236 0.8333 0.9068 0.9409 

3 0.77 0.20 0.80 0.71 0.71 0.80 0.8121 0.7527 0.8060 0.8867 

4 0.77 1.00 0.80 0.71 0.71 0.80 0.7803 0.7016 0.7128 0.8818 

5 0.77 0.60 0.60 0.71 0.71 0.80 0.8376 0.8011 0.8060 0.8522 

6 0.77 0.60 1.00 0.71 0.71 0.80 0.9076 0.7688 0.8967 0.8424 

7 0.77 0.60 0.80 0.42 0.71 0.80 0.7707 0.7151 0.7154 0.8768 

8 0.77 0.60 0.80 1.00 0.71 0.80 0.9427 0.9409 0.7859 0.9212 

9 0.77 0.60 0.80 0.71 0.42 0.80 0.8408 0.7554 0.7607 0.8916 

10 0.77 0.60 0.80 0.71 1.00 0.80 0.9045 0.8629 0.8715 0.8768 

11 0.77 0.60 0.80 0.71 0.71 0.58 0.8631 0.8038 0.8161 0.8768 

12 0.77 0.60 0.80 0.71 0.71 1.00 0.8981 0.8387 0.8463 0.8768 

13 0.77 0.60 0.90 0.71 0.71 0.80 0.9586 0.9704 0.9647 0.9360 

14 0.77 0.60 0.80 0.71 0.71 0.89 0.9873 0.9892 0.9849 0.9458 

15 0.88 0.60 0.80 0.71 0.71 0.80 1.0000 0.9866 1.0000 0.9951 

To increase the accuracy of the ANNs results and the network performance, separate different 

networks are trained for output parameters. The input parameters in all of the networks training are the 

same. All of the considered input parameters, including: welding speed, the rotational speed of the 

tool, axial force, shoulder diameter, pin diameter and the tool hardness are used in each modeling for 

different output parameters. 

As it is mentioned, several networks with different architectures have been trained to find the 

optimum structure (OS) of ANN. OS is used to predict the considered parameters with the least mean 

relative error possible. Results of the networks have been investigated. Table 7 demonstrates the 
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relevant information of network structure and some related results for training networks for each 

considered output parameters. 

Table 7. Related information of three different training networks for each considered output 

parameters. 

Output 

parameter 

Modeling 

No. 

Rate of 

Training 

Layers 

Structure 

 

Hidden 

Transfer 

Function 

Output 

Transfer 

Function 

PCC MRE 

(%) 

 

Yield 

strength 
1 0.175 6×6×10×4 Logsig Logsig 0.99899 0.9315 

2 0.170 6×6×4×4 Tansig Linear 0.99811 1.1261 

3 0.137 6×6×8×4 Logsig Tansig 0.99835 0.9867 

Tensile 

strength 
1 0.156 6×8×10×4 Logsig Logsig 0.99976 0.9746 

2 0.148 6×8×8×4 Logsig Logsig 0.99913 1.0012 

3 0.124 6×6×8×4 Logsig Tansig 0.99922 1.1553 

Notch-

tensile 

strength 

1 0.160 6×8×12×4 Logsig Logsig 0.99837 1.2127 

2 0.165 6×6×8×4 Tansig Linear 0.98891 1.6696 

3 0.150 6×6×10×4 Tansig Logsig 0.99018 1.5134 

Welding 

Zone 

Hardness 

1 0.112 6×6×12×4 Logsig Logsig 0.99984 0.7397 

2 0.098 6×8×10×4 Logsig Tansig 0.99979 0.7766 

3 0.120 6×6×8×4 Logsig Linear 0.98764 0.9891 

To find the ANNs optimum response, after implementation of multiple networks, some of them are 

noted in table 7, and investigation of them, the structures shown in table 8 are selected and used for 

simulation and obtaining the results.  

Table 8. Information of selected networks. 

Output 

parameter 

Rate of 

Training 

Layers 

Structure 

 

Hidden 

Transfer 

Function 

Output 

Transfer 

Function 

Training 

PCC 

Training 

MRE 

(%) 

Yield 

strength 

0.175 6×6×10×4 Logsig Logsig 0.99899  0.9315 

Tensile 

strength 

0.156 6×8×10×4 Logsig Logsig 0.99976 0.9746 

Notch-

tensile 

strength 

0.160 6×8×12×4 Logsig Logsig 0.99837 1.2127 

Welding 

Zone 

Hardness 

0.112 6×6×12×4 Logsig Logsig 0.99964 0.7398 

Results of table 8 show that the values of PCC and MRE are both acceptable for each output 

parameters, so it is concluded that networks are trained finely. 

The selected networks employed to networks testing. Figure 8 demonstrates the predicted values of 

each output parameters by means of the obtained model function in comparison to the experimental 

values. 

Percentage of relative error values for each fifteen testing samples, at the whole considered output 

parameters are shown in figure 9. Table 9 shows the achieved values of PCC and the mean relative 

error for testing samples by use of the selected training networks and their related model function.  

As it can be seen the obtained values of PCC from testing in comparison to training, decreased; and 

the achieved mean relative error values from testing in comparison to training, increased. The PCC 

values are more than 99.9% for the hardness of welding zone and more than 99.4%, 99.5% and 99.8% 

for notch-tensile strength, yield strength, and tensile strength, respectively. In addition, the obtained  
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(a) Yield strength (b) Tensile strength 

  
(c) Notch-tensile strength (d) welding zone hardness 

Figure 8. Predicted values in comparison to experimental values for each fifteen 

testing samples for different considered output parameters. 

 

Figure 9. Obtained relative error values for each fifteen experiments of testing networks. 

Table 9. Achieved values of PCC and MRE for testing networks. 

Output parameter Testing 

PCC 

Testing  

MRE (%) 

Yield strength 0.99543 1.0820 

Tensile strength 0.99875 1.1303 

Notch-tensile strength 0.99403 1.3046 

Welding Zone Hardness   0.99918 0.7917 
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mean relative errors are in small range (0.7917-1.3046), and the predicted values for the hardness of 

welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative 

errors, respectively. According to the obtained results, it is observed that, predicted values form the 

response of ANN and the experimental values are in admirable agreement. So it can be concluded that 

the ANNs are tuned finely to predict the FSW effective parameters, and the ANNs can be used in 

prediction and optimization of this process parameters. 

6.  Conclusion 

In the present study, the artificial neural networks were employed to predict the friction stir welding 

parameters on 7075-T6 Aluminum Alloy. The rotational speed of the tool, welding speed, axial force, 

shoulder diameter, pin diameter and tool hardness were regarded as inputs of the ANN. Four effective 

parameters of FSW process including: yield strength, tensile strength, notch-tensile strength and 

hardness of welding zone modeled. The obtained values of MRE are 1.0820, 1.1303, 1.3046 and 

0.7917 for each parameter, respectively. Also, the values of PCC for all of the parameters are more 

than 99%. According to the achieved results, it can be concluded when the artificial neural networks 

are tuned finely, the modeling results are in admissible agreement with the experimental results. 

Therefore, using ANNs instead of experiments, decreases costs and the need for special testing 

facilities; and the ANNs can be employed to optimize and predict the effective parameters for FSW 

process. 
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