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Abstract. By taking into consideration the two categories of military projectile threats to 

aircraft structures, an optimal layer configuration of ceramic faced composite armor was 

designed in this paper. Using numerical simulations and the same layer arrangement of ceramic, 

UHMWPE, and carbon fiber laminates, a parametric finite element model using LS-DYNA 

code was built. Several thickness combinations were analyzed in order to determine the final 

lightest configuration that is capable of supporting a high-speed impact load and HEI blast 

wave load, which implements a high anti-penetration design for aircraft armor. This 

configuration can be used to improve the anti-impact ability of aircraft structures as well as 

achieve a structure/function integration design that considers a lighter weight.  

1.  Introduction 

Air weapons are playing an increasingly important role in modern warfare. However, as ground air 

defense forces continue to develop, many countries are becoming increasing concerned with the 

improvement of military aircraft survivability when subjected to ground fire. To ensure safety during 

flights, structural integrity should be maintained, and the main airframe should have sufficient impact 

resistance. Lightweight armor systems can efficiently improve the maneuverability, attack ability, and 

survivability of aircrafts, and they have become a trend for bulletproof armor systems.  

For evaluating aircraft structure degradation resulting from a projectile impact, military projectiles 

of concern in aircraft design can be loosely cataloged into two generic types [1]: (a) non-exploding 

projectiles and (b) exploding projectiles. For the non-exploding type, typical encounter condition 

criteria for a low-speed aircraft might be a normal impact at a velocity of 2000ft/s. However, for HEI 

(High Explosive Incendiary) projectiles, the aircraft damage is a combined effect of fragment impacts 

and blast pressures. Under fire from HEI, the aircraft should be able to survive the impact and return 

safely to base. 

The armor structure that equips aircrafts needs to possess a good anti-impact performance as well 

as be able to meet certain special requests, such as aerodynamics and load transfer. Additionally, it 

must also satisfy weight constraints. Since the 1960s, in which it was first demonstrated that multi-

layered armors present advanced strength efficiency when subjected to a high velocity impact, 

extensive progress has been made in this field. For instance, Wilkins [2] studied the ballistic 

performance of ceramic tiles backed by aluminum plates against a 7.62 mm projectile. The impact 

response of ceramic-composite hybrid armor was studied by Woodward using a one-dimensional 
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approach [3]. Additionally, Wang and others optimized multi-layered armors in order to generate the 

best performance [4-6]. To improve the ballistic performance, a UHMWPE layer was incorporated 

with the traditional ceramic armor backed by fiber reinforcement composites, so a three layer 

configuration was designed in which a ceramic layer works as an energy absorption and dissipation 

layer, a carbon fiber layer works as a support layer and also a load transfer layer, and a UHMWPE 

layer works as a flexible layer to absorb the residual energy of the projectile. This configuration can 

effectively improve the anti-impact ability as well as achieve a structure/function integration design 

that considers a lesser weight.  

In order to improve the anti-impact ability of aircraft structures, research into the anti-impact 

behaviors of composite armors subject to high-speed impact loads and blast wave loads is 

implemented based on the theory of impact dynamics and numerical simulation. Through kinematics 

analysis and ballistic characteristics analysis, an optimal layer configuration is obtained for better 

ballistic performance. 

2.  Numerical model 

A parametric finite element model was built by using the finite element program LS-DYNA
TM

 [7]. 

Three layer models were meshed separately and then assembled with an index file. Using the 

parametric tool built into LS-DYNA, the thickness of every layer could be defined, and the contact 

relationship could be changed accordingly when the index file calls every layer model as subroutines. 

2.1.  Index file 

The information contained in the index file includes the following: 

 Solver control options, such as solve termination time, time step control, and contact 

parameter options; 

 Material mechanical properties of every layer and projectile; 

 Contact definitions between the different layers and projectile; 

 Initial velocity of the projectile. According to reference 1, vi= 609.6m/s(2000ft/s); 

 Amplify factor definitions of every layer using keyword * define transform and 

simultaneously the location of every layer; 

 Call FEA sub-model of every layer using keyword * include transform. 

2.2.  Sub-model 

The index file defined nearly every detail, except for the model geometry information. In the sub-

model, the node coordinates and element constructions were built to describe the geometric 

information of every layer.  

The first layer, the ceramic layer, was meshed using solid elements. The central zone mesh was 

refined to achieve accuracy and to avoid negative volume during impact analysis. The second layer, 

the carbon fiber layer, was meshed using shell elements, and each element was created by mapping the 

above ceramic layer. The layup information, such as the thickness and angle of every lamina, was 

defined by applying the keyword * INTEGRATION_SHELL. Finally, the third layer, the UHMWPE 

layer, was also built with solid elements. 

The projectile (weight of 46 g) was modeled by solid elements with a diameter of 12.7 mm and 

length of 64.5 mm.  

The finite element models of each layer and the projectile are shown in figure 1. 

The final complete finite element model is given in figure 1(d), and it indicates the three composite 

armor layers (ceramic 6 mm, carbon fiber 3 mm, and UHMWPE 5 mm) and the projectile.  

2.3.  Material model  

For the ceramic, carbon fiber, and UHMWPE, three constitutive model were respectively utilized: 

Johnson Holmquist Ceramics, Enhanced Composite Damage, and User Defined Material Models. 

Additionally, the Johnson Cook constitutive model was used for the steel projectile. Each material’s 
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mechanical properties are detailed in table 1.  

Table 1. Mechanical properties of materials. 

Steel(Johnson Cook Model) [8] 

 (Kg/m
3
) G(Gpa) K1(Gpa) K2(Gpa) K3(Gpa) Tm(℃) 

7800 78 164 294 500 1520 

Cp(J/Kg℃) A(Gpa) B(Gpa) N C M 

477 0.792 0.510 0.26 0.014 1.03 

SiC(Johnson Holmquist Ceramics Model) [9] 

 (Kg/m
3
) G(Gpa) A B C M 

3163 183 0.96 0.35 0.0 1.0 

N EPSI T(Gpa) SFMAX HEL(Gpa) PHEL(Gpa) 

0.65 1.0 0.37 0.8 14.567 5.9 

D1 D2 K1 K2 K3 BETA 

0.48 0.48 204.785 0 0 1.0 

CCF-1/5228 Carbon Fiber (Enhanced Composite Damage Model) 

 (Kg/m
3
) tE0

1 (Gpa) 
0

2E (Gpa) 
0

12G (Gpa) 
0

23G (Gpa) 0

12  

1700 146 8.53 4.22 9 0.3 

CY  
0Y  CY   0Y   SY   

RY  

4.29 1.0 1.294 1.0 5.0 1.0 

maxd  ft

i  ft

u  ft

ud  CE 0
  

0.97 0.001 0.005 0.97 23.4  

UHMWPE (User Defined Material Models Hybrid model) [10, 11] 

E(Gpa)   
A (Gpa) lock

A  
Bis  Bfs  

2.452 0.46 0.00921 2.83 40.0 10.0 

B  base

B (Gpa) 
Bm  p̂  base

p (Gpa) pm (Gpa) 

27.0 0.0246 9.50 200 0.008 0.0033 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 1. Finite element model. (a) Ceramic layer; (b) Carbon Fiber Layer; (c) UHMWPE Layer; 

(d) projectile. 
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3.  Selective preference design for high anti-penetration armor  

In designing aircrafts, the optimization method is usually the optimal means of achieving a structure 

that performs well but is also relatively light weight. However, armor impact analysis is very time-

consuming, and the process includes some indispensable manual intervention to solve certain issues, 

such as negative volume, abnormal penetration, and hourglass control. Thus, it is difficult to 

automatically obtain the best thickness combination for different layers by using the optimization 

method. 

A selective preference design was used, which employed the parametric model so as to 

intentionally change the amplification factor of every layer. After analyzing every thickness 

combination, the areal density and the residual kinetic energy are evaluated in order to determine the 

best armor construction. 

Under the initial speed of 609.7 m/s (initial kinetic energy 8.55 KJ), 25 combinations of armor 

construction were analyzed, and the results are shown in table 2.  

Table 2. Armor impact results of various thickness combination. 

Armor Arrangement (mm) Total 

thickness 

(mm) 

Areal 

density 

(g/cm
2
) 

Residual 

speed 

(m/s) 

Residual kinetic 

energy (KJ) 

Impact 

results 

SiC Carbon 

fiber 

UHMWPE 

9.24 0 0 9.24 29.20 -90.3 0.187544 rebound 

3 1 11.9 15.9 22.12 413.4 3.93069 penetration 

3.5 1 10.2 14.7 22.12 391.2 3.519861 penetration 

4 1 8.4 13.4 22.12 388.15 3.46519 penetration 

4.5 1 6.8 12.3 22.12 441.3 4.479151 penetration 

5 1 5.1 11.1 22.12 436.25 4.377223 penetration 

5.5 1 3.4 9.9 22.12 438.9 4.430564 penetration 

6 1 1.7 8.7 22.12 439.35 4.439654 penetration 

3 2 10.2 15.2 22.12 441.6 4.485243 penetration 

3.5 2 8.50 14.00 22.12 430.2 4.256657 penetration 

4 2 6.83 12.83 22.12 427.4 4.201427 penetration 

5 2 3.44 10.44 22.12 467.0 5.016047 penetration 

5.5 2 1.75 9.25 22.12 478.8 5.272737 penetration 

6 2.5 4 10.25 26.60 137.9 0.437377 penetration 

6.5 2.5 4.28 13.28 28.44 16.4 0.006186 penetration 

7 2.5 2.58 12.08 28.44 32.3 0.023996 penetration 

3 3 8.52 14.52 22.12 442.1 4.495405 penetration 

3.5 3 6.83 13.33 22.12 427.4 4.201427 penetration 

4 3 5.13 12.13 22.12 415.2 3.964994 penetration 

4.5 3 3.44 10.94 22.12 402.9 3.733553 penetration 

5 3 5 13 25.16 49.1 0.055449 penetration 

6 3 3 12 26.45 -11.7 0.003148 inlay 

3 4 6.84 14.84 22.12 427.3 4.199462 penetration 

3.5 4 5.15 12.65 22.12 392.5 3.543294 penetration 

From table 2, it can be seen that all the combinations with an areal density of 22.12 were penetrated. 

With increased total thickness and areal density, two armor constructions were capable of meeting the 

non-exploding projectile impact design request: the ceramic 6 mm/carbon fiber 3 mm/UHMWPE 3 

mm and the single layer ceramic. However, the hybrid construction has a lower areal density than the 

does the single layer ceramic. The residual velocity of the bullet is 11.7 m/s in the negative direction, 

which denotes that most of the kinetic energy was absorbed by the armor. The deformation of every 

layer and the projectile of the preference construction are given in figure 2, and the speed-time curve 
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of the projectile is shown in figure 3. 

  
(a) (b) 

 

 

(c) (d) 

Figure 2. The deformation of every layer and projectile. (a) Deformation of ceramic layer; 

(b) Deformation of carbon fiber layer; (c) Deformation of UHMWPE layer; (d) 

Deformation of projectile. 

 

Figure 3. The speed-time curve of the projectile. 

4.  HEI blast wave load simulation 

The armor’s response when subjected to another threat, the HEI blast wave load, was analyzed based 
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on the CJ theory of the blast wave. According to the construction built in reference [12], a finite 

element model was built to simulate the HEI projectile, as is shown in figure 4. The model contains 

four parts including the explosive, shell case, infilling, and fragments. For 23 mm HEI, 13.28 g of 

RDX was used as the ammunition, and the explosive process was calculated with the JWL equation of 

state. The EOS parameters for RDX are described in table 3. 

 

Figure 4. HEI projectile model. 

Table 3. RDX explosive parameters. 

 component   Density   

(g/cm)
2
 

Explosive speed 

(m/s) 

Chemical energy release 

(cal/g) 

RDX (CH2NNO2)3 2.70 1.65 8180 1280 

Inside of the HEI projectile, a cylindrical charge (34 mm long and 17 mm in diameter) was meshed. 

The two-part infillings were used to simulate other concentrated masses other than the explosive, and 

the total weight of the infillings could be adjusted by changing the density. On the surface of the shell 

case, 112 rigid parts were distributed so as to simulate the fragments created during an explosion. The 

mass of each fragment was calculated based on the detonation parameters and the shell case 

dimensions detailed in reference [12]. The finite element model for each part is shown in figure 5. 

  
(a) (b) 

  
(c) (d) 

Figure 5. HEI Projectile constructions. (a) RDX explosive; (b) Infillings; (c) Fragments; (d) 

Shell case. 
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Following impact with an HEI, the armor experiences a double effect resulting from both the blast 

wave and the fragment impact. The projectile case would be destroyed because it reached the damage 

criteria after the explosion. In addition, the rigid fragments flew off at approximately 1500 m/s. The 

HEI explosion is shown in figure 6, and the speed of some of the fragments are given in figure 7. 

 

Figure 6. The explosive of HEI (0.012ms). 

 

Figure 7. Speed of some fragments. 

To test the construction (ceramic 6 mm/carbon fiber 3 mm/UHMWPE 3 mm) obtained in the 

previous section, an impact response analysis was implemented. The distance between the HEI 

projectile and the armor was 100 mm. The normal deformation and the maximum stress of the 

different layers are shown in figure 8. 

Figure 8(a) provides a visual representation of the entire impact process. It can be seen that the load 

takes effect in 0.028 ms, and due to the high speed of the fragment as well as its short distance, no 

peak deformation appears due to the blast wave until the fragment impacts the armor. At 0.126 ms, 

under the coupling effect of the blast wave and the fragment, the UHMWPE layer has the first peak 

displacement, which is 0.286 mm. Then, all three layers return to the equilibrium position due to the 

recovery elastic force and then continue to deform backwards until 0.24 ms, which is when the 

ceramic layer reaches its negative peak deformation of 0.126 mm. 

Figures 8(b)-8(d) give the stress contour of every layer. The data reveals that no stress exceeded the 

failure criteria. From the stress contour in figure 8(b), it can be seen that the maximum stress appears 

in the same pattern as the fragment impact, which indicates that the ceramic layer’s function is high-

velocity impact resistance. Meanwhile, the patterns in figures 8(c) and 8(d) give a relatively 
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symmetrical distribution, thus indicating that blast wave absorption is the main function of both the 

carbon fiber layer and UHMWPE layer.  

 
 

(a) (b) 

  
(c) (d) 

Figure 8. The normal deformation and the maximum stress of different layer. (a) The 

deformation of each layer(ceramic 118, carbon fiber 117, UHMWPE 116); (b) Maximum 

stress contour of ceramic layer (maximum stress 6.17 Gpa at 0.09 ms) ; (c) Maximum 

stress contour of carbon fiber layer(maximum stress 0.672 Gpa at 0.114 ms); (d) 

Maximum stress contour of UHMWPE layer(maximum stress 0.026 Gpa at 0.092 ms). 

5.  Conclusions 

A parametric finite element analysis was performed in order to obtain an armor arrangement that could 

meet the criteria for both a non-exploding projectile and an exploding projectile. A 12.7 mm caliber 

bullet was modeled for a numerical test that evaluated different thickness combinations of composite 

armor. The best performing armor was attained by a selective preference design, and then, a numerical 

test with a 23 mm HEI was utilized in order to observe the armor’s response to an exploding projectile. 

The results demonstrated that the armor arrangement is very efficient for both of the two projectile 

loadings. The armor arrangements and the engineering method could both be important references for 

improving armor structures. 
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