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Abstract. In this paper, in order to instruct the next optimization work, a two-dimension 

Computational Fluid Dynamics (CFD) model is developed to simulate temperature distribution 

and velocity distribution of oscillating fluid in the DPTC by individual phase-shifting. It is 

found that the axial temperature distribution of regenerator is generally uniform and the 

temperatures near the center at the same cross setion of two pulse tubes are obviously higher 

than their near wall temperatures. The wall temperature difference about 0-7 K exists between 
the two pulse tubes. The velocity distribution near the center of the regenerator is uniform and 

there is obvious injection stream coming at the center of the pulse tubes from the hot end. The 

formation reason of temperature distribution and velocity distribution is explained. 

1. Introduction 

The pulse tube cryocooler (PTC) is a unique type of regenerative cryocooler in that it does not have 

any moving parts in cold end and thus has considerable system advantages over most other types of 
cryocoolers in terms of reliability, lifetime, vibration and cost. Therefore, the application of pulse tube 

cryocooler is increasing rapidly in the aerospace field, such as the cooling of infrared detectors and 

optic devices. According to different arrangements of the regenerator and pulse tube, there are three 
types of pulse tube cryocooler: coaxial type, U-shape type, and in-line type [1]. The U-shape pulse 

tube cryocooler allows the regenerator and the pulse tube to unpack and can support large and heavy 

devices. In order to realize larger and heavier mass supporting without additional supporting 
components, a new structural pulse tube cryocooler (DPTC) based on traditional U-shape pulse tube 

cryocooler and with one regenerator and two parallel pulse tubes had been machined and 
experimented. This new structural pulse tube cryocooler had been also proposed by J.Yuan and 

J.M.Pfotenhauer in 1997 [2]. 

In previous works [3], two prototypes of U-shape two-pulse-tube paralleled cryocooler have been 
designed and tested. The U-DPTC1 was able to gain 120K@6W cooling power with 80W electric 

input power. Two methods of phase-shifting by inertance tube and reservoir were tested. The 

experiment results demonstrated the feasibility of individual phase-shifting and DC flow could occur 
under general phase-shifting, reducing the performance of the cryocooler. 

In this paper, in order to optimize the design of the new structural pulse tube cryocooler to improve 

the performance further, a two-dimension Computational Fluid Dynamics (CFD) model is developed 
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to simulate temperature distribution and velocity distribution of oscillating fluid in the DPTC by 

individual phase-shifting to instruct the next work. 

2. CFD model of the DPTC 
The physical model and the mathematical model applied are reported below. 

2.1. Physical model 

The prototype of the regenerator and two pulse tubes and the 2D simplified physical model of the 
DPTC beside the compressor is depicted in figure 1, which include an aftercooler, a regenerator, a re-

cold end heat exchanger, a T-shape connecting tube, two pt-cold end exchangers, two same pulse 

tubes, two same hot end exchangers, two same inertance tube assemblies and two same reservoirs (not 
shown in figure 1). All heat exchangers at hot end and cold end are made of OFHC with high 

conductivity and adopt uniform slits using a wire electro-discharge machine (EDM) and the pt-cold 

end exchangers are filled with several 80 mesh copper screens. The regenerator is filled with 400 mesh 
stainless steel screens.  

The grid models of main components are shown in figure 2, which include regenerator, a T-shape 

connecting tube, two same pulse tubes. Their specific details about the scale can refer to the TABLE 1 
in previous paper [3]. All the components adopt a rectangle grid beside the T-shape connecting tube 

with a triangle grid because of its abnormity. In order to describe the fluid characteristic more 

accurately, the grid near the variable cross-section is made denser. The total number of the grid is 
between 12000-15000. 

 

 

Figure 1. The prototype and 2D physical model simplified of the DPTC beside the compressor. 

CEC 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 101 (2015) 012100 doi:10.1088/1757-899X/101/1/012100

2



 

 

 

Figure 2. The grid models of regenerator, pulse tube and T-shape connecting tube. 

2.2. Mathematical model 

The model assumes that all the walls has no thickness. The hot end and the cold end heat exchangers 
are assumed to be of constant temperature, 300 K and 120 K respectively. The outer walls of the 

regenerator and the two pulse tubes are an adiabatic boundary and the other walls are set to an 

isothermal boundary at conatant temperature of 300 K. The various heat exchangers and the 
regenerator are modeled as porous media with the relevant solid properties of the regenerator and the 

heat exchanger materials. Working helium is treated as an ideal gas in the 120-300 K temperature 

region. The charging pressure is 3.8 MPa and operating frequency is 52 Hz. The inlet boundary 
condition is pressure with a pressure ratio of 1.17 at 300 K. In the CFD model, the inlet boundary 

condition is defined by userdefined functions written in the C programming language.  

The fluid dynamic equations  of conservation of mass, momentum and energy are solved in the 
fluid domain. The mass, momentum and energy conservation equations and the gas phase equations 

for the porous media regions are solved simultaneously as shown below [4]: 
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Where ε is porosity of porous media, ρf, ρs represents the density of gas and screen respectively,the 

phasor f represents momentum loss caused by resistance, kf , ks represents the thermal conductivity of 

gas and solid respectively. The formula of resistance source term f is shown as below: 
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Where μ, α represents dynamical coefficient and the penetrability of gas respectively, C represents 
resistance coefficient of mesh screens. 

The commercial code Fluent software that had been proved availability is used for solving the 

governing equations [5, 6], making use of a 2nd order upwind scheme and implicit formulation to 
discretize the governing equations, chosing standard k-ε turbulent model to address the turbulence, 

adopting the piso method in solver for pressure-velocity coupling. There are 100 time steps in one 

cycle, which is sufficient to accurately simulate the model. By monitoring the periodic temperature at 
the surface of the regenerator and the pulse tubes to decide whether the calculation is steady or not, 

and the calculation is steady when the monitored parameters do not change any more. 

3. Result and analysis 

3.1.  temperature distribution characteristic in regenerator and pulse tubes 

The temperature contours inside the regenerator and pulse tubes is shown in figure 3. It is seen from 

the figure 3 that the axial temperature distribution of regenerator is generally uniform, although there 
is small radial temperature difference. For example, it has been demonstrated that there exists a 

temperature difference about 3 K between near wall and center at the middle cross-section in figure 4. 

But, the temperatures near the center at the same cross setion of two pulse tubes are obviously higher 
than their near wall temperatures.  

The wall temperatures of regenerator and two pulse tubes are depicted in figure 5 and figure 6. The 

wall temperature of regenerator distributes linearly. But the wall temperature of pulse tubes presents 
concave curve distribution. Moreover, the two pulse tubes although have been imposed the same 

parameters, the temperature difference about 0-7 K exists between the any same postions of two pulse 

tubes. According to the previous experimental results, there also existed the no-load temperature 
difference about 2.5 K between the cold ends of two pulse tubes.  

 

Figure 3. The temperature contours of regenerator and pulse tubes. 
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Figure 4. The temperature at the middle cross-section of regenerator. 

 

Figure 5. The wall temperature of regenerator. 

 

Figure 6. The wall temperature of pulse tubes. 
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3.2. Velocity distribution characteristic in regenerator and pulse tubes 

The velocity distribution inside the regenerator and pulse tubes is shown in figure 7. It is seen from the 

figure 7 that the velocity distribution near the center of the regenerator is uniform and there is obvious 
injection stream coming from the hot end at the center of the pulse tubes. It is analyzed that the 

injection stream is caused by the variable cross-section at the T-shape connecting and re-cold end heat 

exchanger and at the inertance tubes and hot end heat exchangers, with the area ratio of 46.9 and 8.41 
respectively. But, the screen matrix is filled in the regenerator and makes the fluid flowing uniform 

coming from the re-cold end heat exchanger filled some copper screens with the total equivalent 

porosity of 0.7. However, there are only hollow tube in the pulse tubes, so the injection stream is 
forming by the flow coming from the hot end heat exchangers with the high porosity of 0.9.  

According to the temperature distribution and velocity distribution in the pulse tubes, it is the 

injection stream that caused the temperature distribution in two pulse tubes shown in the figure 4. 
Moreover, it is because of the screen matrix that makes the fluid flowing uniform in the regenerator, 

so it can be a feasible method that adding a few low mesh copper screens to hot end heat exchangers 

for solving the the injection stream. 

 
Figure 7. The velocity distribution inside the regenerator and pulse tubes. 

4. Conclusion 

Based on the two-dimension model, this paper presents the use of the CFD method to simulate the 
temperature distribution and velocity distribution of oscillating fluid in the DPTC by individual phase-

shifting. The results reveal that the axial temperature distribution of regenerator is generally uniform, 
but there is a temperature difference about 3 K between near wall and center at the middle cross-

section of regenerator. The temperature near the center at the same cross setion of two pulse tubes is 

obviously higher than their near wall temperature and the temperature difference about 0-7 K exists 
between the two pulse tubes. The velocity distribution near the center of the regenerator is uniform 

and there is obvious injection stream at the center of the pulse tubes coming from the hot end heat 

exchanger. Adding a few low mesh copper screens to hot end heat exchangers would help to reduce 
the influence of the injection stream. 
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