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Abstract. The objective of this paper is to carry out an extensive Computational Fluid 
Dynamics (CFD) study on work transfer due to viscous shear in a hot cascade Ranque -Hilsch 
vortex tube. The commercial CFD code ANSYS FLUENT 14.0 has been employed to carry 
out the numerical analysis using RANS standard k-epsilon turbulence model. A two-
dimensional axisymmetric geometrical domain has been generated with structured mesh and 
air has been taken as the working fluid. The CFD results reveal that work transfer due to the 
action of viscous shear along the tangential direction increases considerably with hot 
cascading. However, the work transfer due to viscous shear along the axial direction degrades 
the performance of the device as the heat transfer takes place from cold zone to the hot zone. 
The effect of radial shear stress is negligible due to low value of radial velocity gradient. 

1. Introduction
Ranque -Hilsch vortex tube is a device that is capable of splitting the highly compressed inlet gas into 
two streams of lower pressure gases, namely, central zone of cold fluid and peripheral zone of hot 
fluid around the inner wall of the tube. The thermal separation in a vortex tube depends on several 
geometrical and operational parameters and the process of thermal separation is still a topic of 
research as no theories explained it successfully. However, the work transfer due to viscous shear is 
considered to be the most widely acceptable theory proposed by (Hilsch, 1947) and subsequently 
supported by (Fröhlingsdorf and Unger, 1999, Colgate and Buchler, 2000, Aljuwayhel et al., 2005, 
Behera et al., 2008).  

Though the vortex tube is basically used for cooling purposes, the hot gas can also be used for 
heating purposes to make efficient use of both the cold and hot gases produced by the device. 
However, the heating effect generated in a single stage vortex tube is not high enough which can 
further be used to achieve any useful work. Therefore, the method of hot cascading is an endeavor to 
make use of the cold gas for cooling purposes while improving the heating capacity of the hot gas, 
thereby enhancing the overall efficiency of the whole system. Exergy analysis based on experimental 
(Dincer et al., 2011) and numerical (Bej and Sinhamahapatra, 2014) studies confirm that efficiency of 
the device improves with hot cascading. The advantages of multiple staging over single stage vortex 
tube have been successfully reported in (Dincer, 2011, Guillaume and Jolly, 2001).  
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2. Hot cascade arrangement and geometrical domain

Figure 1: Schematic diagram of the hot cascade Ranque-Hilsch Vortex Tube 

Figure 2: Geometrical domain of the second stage RHVT 

In a hot cascade arrangement, there are two vortex tubes connected in series in such a way that the hot 
gas produced by the first stage of vortex tube serves as the inlet fluid for the second stage vortex tube. 
A schematic presentation of the hot cascade Ranque-Hilsch vortex tube is shown in figure 1. The 
geometrical domains of both the first and second stage vortex tubes are similar. A two-
dimensional axisymmetric model of the vortex tube is generated with near wall refined mesh as 
shown in figure 2. However, as this paper is based on the study of effects of viscous shear due 
to hot cascading, therefore, prime attention is focused on the second stage vortex tube. The 
validity of the numerical model is evaluated through an overall temperature separation against the 
experimental data available in literature (Behera et al., 2005)  

3. CFD model and Boundary conditions
The standard k-ε turbulent model in conjunction with continuity, gas state equation and 
Reynolds-averaged Navier–Stokes equations are employed to study the turbulent flow in the 
tube. The equations involved for turbulence energy and turbulence dissipation rate with 
standard notations are as follows:  
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The associated model constants are: 
 𝑃𝑃𝑡 = 0.85, 𝐶1𝜀 = 1.44, 𝐶2𝜀 = 1.92, 𝐶3𝜀 = -0.33,  𝐶𝜇 = 0.09, 𝜎𝜀 = 1.0, 𝑃𝑃𝑡 = 1.3 

The mass flow rate at the inlet of the second stage RHVT is fixed at 50% of the first stage RHVT. The 
boundary conditions applied for first and second stage RHVT are derived from the experimental work 
by (Dincer et al., 2011). Adiabatic and no slip conditions are set at all the solid walls. Total pressure at 
the inlet of first RHVT is fixed at 730kPa (abs). The static pressure at the cold exit of both tubes is set 
at 100kPa (abs). Zero temperature gradient is applied at both the hot and cold exits of both the vortex 
tubes. The first stage RHVT produces cold fraction value of 0.5 when the hot exit pressure is fixed at 
440kPa. Therefore, inlet pressure of the second stage RHVT is fixed at 440kPa (abs). The hot exit 
pressures are varied to get the different values of cold fraction in second stage RHVT.  

4. Mathematical formulation for work transfer due to viscous shear  

 
Figure 3: Control surfaces created for calculation of work transfer 

 
To calculate the radial distribution of work transfer due to viscous shear, a numbers of control 
surfaces normal to the axis at different axial locations are considered. The first surface is created near 
the inlet (x/L = 0.13) and the last is close to hot exit (x/L = 0.98). Apart from these two, 19 more 
equidistant surfaces are created within the span of x/L = 0.13 to 0.98 as shown in figure 3. Similarly a 
number of control surfaces parallel to the axis of the vortex tube are created at the radial locations of r 
= 0.1mm,between 0.5mm to 4.5mm with an interval of 0.5mm and one at very close to the wall at r = 
4.9mm.  
a) Radial distribution of the rate of work transfer due to the viscous shear across a differential length 
of the control surface (dr): 
The rate of tangential viscous shear work per unit length is calculated as follows 
                                                         𝛿𝑊̇𝜃

𝑑𝑑
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Where x is the axial co-ordinate and w is the swirl velocity (ms-1).  
Effective viscosity, 𝜇𝑒𝑒𝑒 = 𝜇 + 𝜇𝑡 
Similarly, rate of radial viscous shear work per unit length, 
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Where v is the radial velocity (ms-1). 
b) Axial distribution of the rate of work transfer due to the viscous shear across a differential length of 
the control surface (dx):  
The rate of tangential viscous shear work per unit length  
                                                       𝛿𝑊̇𝜃
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Rate of axial viscous shear work per unit length, 
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5. Results  
 
5.1. Fluid flow study 
The CFD study has been carried out to understand the fluid flows, namely velocity contours, pressure 
contours, behavior of streamlines and total temperature separation contours. Figure 4 represents the 
behavior of swirl, axial and radial velocity components along the radial distance from the axis when 
the cold fraction is fixed at 0.5. The magnitude of all the three components seems to reduce gradually 
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on moving towards the hot exit. The swirl velocity component has the highest value and positive 
throughout the vortex tube. However, the axial velocity component reverses its direction near the axis, 
and responsible for cold fluid to be generated at the opposite end of the hot exit. Though the trend of 
all there velocity components obtained from second stage RHVT remain similar to that of first stage 
RHVT, the magnitudes are found to be higher for same value of cold fraction.  

The streamlines and temperature separation contours are shown in figure 5 and 6 respectively. It 
demonstrates that the axial heat transfer has degrading effects on the performance of the vortex tube 
within the region of cold exit and inlet. It implies that the flow in the middle and outer part of the cold 
exit zone has a tendency of gaining heat along the axial direction. Within the extended cold exit 
region the flow pressure and temperature rise along the outward radial that leads to gain in thermal 
energy. 

Figure 4: Radial distribution of swirl, axial and radial velocity components at the axial locations of x/L 
= 0.17, 0.56, and 0.98 

Figure 5: Streamline plots 
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Figure 6: Total temperature contours 

  

 
Figure 7: Radial distribution of static and total pressure at the axial locations of x/L = 0.17, 0.56, and 

0.98 

The radial distribution of total pressure and static pressure is shown in figure 7. The total pressure 
behaves similar to the swirl velocity component. It demonstrates that the total pressure gradient is 
mainly affected by the swirl velocity. However, the fluid moving towards the hot end is imposed by 
the drag force produced as a result of pressure gradient between the flow field and cold exit. The flow 
reversal happens when the fluid has no more momentum to flow against the pressure gradient. The 
fluid expands even after flow reversal till it reaches the atmospheric pressure at the cold exit. During 
the reversal of flow the difference in total pressure and static pressure values near the axis is found to 
be small. This pressure difference increases towards the wall of the vortex tube due to the increase in 
axial as well as swirl velocity. 
 
5.2. Radial distribution of tangential and radial viscous shear work  
The rates of work transfer in second stage vortex tube due to tangential and radial viscous shear are 
calculated using equation (3) and (4) respectively. Figure 8 represents the radial distribution of work 
transfer per unit length due to tangential and radial viscous shear at three axial locations, namely x/L = 
0.17, 0.56 and 0.98when the cold fraction is 0.5. The process of tangential shear work transfer from 
the cold to hot fluid near the axis in this region can be attributed to very large pressure gradient near 
the inlet leading to intense turbulence. Turbulence drives the momentum from fluid near the axis 
towards the fluid around the vortex tube wall. Hence, the transfer of work due to tangential shear 
takes place from the cold zone to the hot zone. The profiles of tangential shear work transfer start with 
zero at the axis, then become positive and remain so until y/R = 0.8 and finally changes to negative as 
they approach the vortex tube wall. The effects of work transfer due to radial shear at the axial 
locations are also shown in figure 8. The magnitudes are too small due to low values of radial velocity 

CEC 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 101 (2015) 012066 doi:10.1088/1757-899X/101/1/012066

5



 
 
 
 
 
 

gradients. Therefore, the effect of radial shear work on the thermal separation is practically negligible 
and can be ignored in the study of vortex tube performance. 
 

 
Figure 8: Radial distribution of tangential and radial viscous shear work transfer per unit length at the 

axial locations of x/L = 0.17, 0.56, and 0.98 

 

 
Figure 9: Radial distribution of total tangential and radial viscous shear work transfer 

 
5.3. Total tangential and radial viscous shear work transfer across the radial surfaces  
The total work transfer due to tangential and radial shear work for the respective control surfaces are 
calculated by integrating equations (3) and (4) over the whole control surface. Figure 9 shows radial 
distribution of total tangential and radial viscous shear work transfer at the axial locations of x/L = 
0.17, 0.56 and0.98 when cold fraction is 0.5. Though the work transfer is found positive throughout 
the length of the vortex tube, the magnitude is too small. So, it can be concluded that the contribution 
of work transfer due to radial distribution of tangential and radial shear work in the process the 
temperature separation in second stage vortex tube is negligible. 
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5.4. Axial distribution of tangential and axial viscous shear work  
The axial distribution of work transfer per unit length due to the tangential and axial viscous shear at 
the radial locations of y/R = 0.1, 0.5 and 0.99 is analyzed in figure 10. The tangential shear work is 
found to be positive over all the control surfaces, whereas the axial shear work is observed to be 
negative for y/R = 0.99 i.e. the surface near the vortex tube wall. The work transfer due to tangential 
viscous shear has a very high value as compared to that due to axial viscous shear. However, the value 
of both the work transfer reduces vigorously beyond the length of x/L = 0.4 to 0.5 depending on the 
value of y/R. This can be interpreted as the stagnation region within which maximum temperature 
separation occurs. It is also noted that maximum work transfer occurs near the inlet due to higher 
pressure gradient in this region. 
 

 
Figure 10: Axial distribution of tangential and axial viscous shear work transfer per unit length at the 

radial locations of y/R = 0.1, 0.5, and 0.99 
 

 
Figure 11: Axial distribution of total tangential and axial viscous shear work transfer 
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5.5. Total tangential and axial viscous shear work transfer across the axial surfaces 
The total tangential and axial viscous shear work transfer is calculated using equation (5) and (6) 
integrated over the whole control surface. Figure 11 depicts the comparison study of axial distribution 
of total work transfer due to tangential and axial viscous shear. It is very clear from the figure that 
tangential shear work plays the utmost role in the process of thermal separation. However, the net 
work transfer at a particular point in the vortex tube is the resultant of work transfer, both axial and 
radial distribution of tangential, axial, and radial viscous shear. 

6. Conclusions
Maximum work transfer due to tangential shear occurs near the inlet where maximum expansion of 
the gas takes place. This confirms that the tangential shear drives the energy from cold fluid zone to 
hot fluid zone as a result of pressure drop. The profiles of work transfer due to tangential and axial 
viscous shear show that the difference of work transfer between the peripheral to central core zones 
decreases on moving towards the hot exit. Maximum temperature separation occurs within an axial 
span of x/L = 0.17 to 0.50 and radial span of y/R = 0.40 to 0.60. That the action of viscous shear on 
fluid layers improves the conversion of kinetic energy into thermal energy has been confirmed. 
Thermal separation in second stage vortex tube of hot cascade type RHVT takes place mainly along 
the axial direction due to the effects of tangential and axial viscous shear work transfer. 
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