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Abstract. Liquid cryogens cooling by direct contact is very often used as a method for 
decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cool-
down process conducted in that way could not be optimized, because of cryogen pool boiling 
characteristic and low value of the heat transfer coefficient. One of the possibilities to increase 
the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray 
cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface 
process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat 
and smooth surface with respect to the different Weber numbers, is shown. Temperature 
profiles in calculation domains are presented, as well as the required cooling time. The 
numerical calculations are performed for different initial and boundary conditions, to study 
how the wetting contact coefficient is changing, and how it contributed to heat transfer 
between solid and liquid cryogen. 

1.  Introduction 
Spray cooling (SC) method is one of the best ways to dissipate the heat from the surfaces with high 
cooling rate. Most problems of heat dissipation comes from the devices, which generate high amount 
of heat flux per unit area, such as microchips in hot spots, or high power laser arrays [1]. At the 
cryogenic temperature range, some applications, which use HTS cables also require local protection 
against accidental heating up to normal conducting state. It  is worth mentioning that, local heat flux 
value within HTS cables could increase even to 106 W/m2 [2].  

Spray cooling by liquid nitrogen could also be applicable in tissue preservation method, using cryo-
glass-freezing technique. In this area there are two basic approaches of increasing the viability of cells 
after its thawing. One of them contributes to high freezing rate, which would protect the delicate 
structure of mammal tissues before its damage [3].  

Liquid nitrogen spray cooling is used not only in the field of cryopreservation technology, but also 
in microchips technology [4]. The fundamental limitations, which came up in the recent CPUs, are 
interconnect time delays and problems of dissipate the heat loads generated by computer processors. 
The research of D E Tilton et al. [4] provided some conception of utilizing High Temperature 
Superconducting (HTS) material interconnection with heat dissipation by spray cooling of liquid 
nitrogen. Due to positive feature of SC it is probable to maintain temperature below transition point of 
superconducting state for HTS cables, and also to cool down the microchips to the required level. 
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The paper shows the heat transfer rate determination of the liquid nitrogen spray cooling in small 
scale, using single droplet evaporation model in three-dimensional space system. To determine the 
features of solid surface cooling rate, the parameter of Wetting Contact Coefficient (WCC) is 
introduced. 

The numerical model was performed by using two-phase Volume of Fluid method of surface 
tracking between phases. All the simulations were carried out with the usage of the OpenFOAM 2.3.0 
toolkit environment.  

2.  Small scale analysis  
Hydrodynamic and thermal influence of impacted droplets onto flat surface are coupled and dependent 
from each other. Droplets created in the sprays reach the surface and have an effect with heated 
surface in a short period of time, with is a highly complicated process, depends on a kinetic energy of 
the droplet during impingement [5]. A process of shape formation mostly depends on viscosity, inertia 
and surface tension forces [6]. Interface contact formation starts with liquid spreading and wetting of 
solid surface, which was proved in [2,3] that mentioned process is much faster than heat transfer 
between two mediums. To compare different behavior of droplets, the dimensionless Weber number 
was implemented, as the ration between inertia forces to surface tension forces of the droplet. 

 �� = ������	

 ,  (1) 

 
where: ρl – liquid density; d0 – initial droplet diameter; v0 – initial droplet velocity; σ - liquid surface 
tension. It is shown in the publications [1, 2, 9] that, when liquid achieves the critical Weber number, 
droplets could divide into smaller particles. The critical value of We depends on liquid type and is 
experimentally determined, but in most cases it is assumed to be around 14 [10].   

Heat transfer of single droplet is determined by initial temperature of the drops, walls, and 
environment, as well as partial pressures between liquid-vapor interface and partial pressure in some 
distance from interface [6]. As it was shown in [11] heat transfer process of single droplet occurs at 
time-varying wetting surface.  

Heat transfer for sprays in macro-scale mostly depends on sparging density. Together with the 
increase of liquid sparging density, the heat transfer rate from the flat surface grows. Sparging density 
is described as a ratio of volumetric flow rate to active surface area perpendicular to the direction of 
the liquid flow [10]. In small-scale (for a single droplet), analogous coefficient of wetting contact 
surface (WCC) could be introduced according to the study of [6]. This coefficient defines area 
occupied by spread liquid to initial diameter of the droplet treated as an ideal sphere:  
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Dr – imaginary diameter of the wetting circle, on which droplet interacts; d0 – initial droplet diameter.  

3.  Numerical method  
The numerical calculations were carried out with the usage of OpenFoam software where the set of 
discretized Navier Stokes (NS) linear equations were solved. OpenFOAM libraries implement a finite 
volume elements method (FVM) of second order of convergence with support of arbitrary 
unstructured meshes. 

3.1.  Numerical model of phase change. 
Subject to heat transfer rate during dynamics of liquid nitrogen droplet propagation on a flat and 
perfectly smooth surface, was under consideration in this study. To analyze the impact of WCC on the 
heat flux, a liquid nitrogen droplet having a diameter of 1.0 mm was selected, to allow better 
observation of the influence of liquid spread on thermal problems.   
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Figure 1. Numerical domain. 
 

Contact surface boundary condition between solid and liquid, was implemented as 1.0 mm thick 
material surface. Additional material was introduced as a virtual domain of solid, on which 
temperature profile was calculated assuming a one-dimensional heat transfer process from the bottom 
of a virtual domain, with steady temperature value as a boundary condition. All calculations for the 
one-dimensional heat transport problem were performed by the equation shown in (3). This pseudo-
conjugate heat transfer helps to developed the temperature profile on a hot surface, during simulation 
time.  
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where: cp is heat capacity, ρ – density, � is thermal conductivity, m subscript represent the properties 
of material declared, ��  is a heat flux forced by evaporation. Approximation of 1D heat transfer in 
virtual solid was justified by calculated issues on a small scale. Temperature of the contact surface was 
being updated during each time step after passing the main program loop.  

The simulation has been considered for the three types of solids, used in cryogenics: aluminum, 
stainless steel SS 304, and Kapton. As an initial temperature for the contact surface was established at 
the value of 83 K, which corresponds to working temperature of HTS cable Bi-2223 producing around 
0.1 T of magnetic field [13]. Initial temperature for the liquid nitrogen droplet was fixed to 
temperature of phase change under atmospheric pressure (77 K). Maximal temperature differences 
between solid and liquid ensures that during simulations, evaporation process occurs in nucleate 
boiling regime.  

To develop single liquid particle behavior, a numerical method of interface surface tracking called 
Volume of Fluid (VoF) was used [14]. Phase border is calculated by introducing additional liquid 
fraction function. This function gives a parameter value declared as a volume ration of liquid in 
individual numerical mesh cell to overall cell volume. Introducing the new parameter allows 
computing a set of NS equations by Euler method, treats a values of density, kinematic viscosity, and 
other two-phase parameters, the same as in one-phase system, thanks to the average representation of 
two phases’ properties (see equations 6,7,8). However, when the two-phase system with the transition 
phase is considered, this approach may enter additional disorders, treating the equation of energy 
throughout the mesh volume uniformly. This may lead to a situation in which evaporation (under 
appropriate thermodynamic conditions) will occur in the whole volume of liquid uniformly, rather 
than on the interface itself. In order to eliminate unfavorable effects related to the calculation taken by 
VOF method, the authors have placed additional solver algorithm for detecting the gradient of the 
interface by introducing Heaviside functions, to obtain sharp edge of phase transition. Similar 
treatment of the problem could be found in [15]. Heaviside function is used for reconstructing the 
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interface between liquid and vapor of the nitrogen. This approach takes place in order to estimate 
better the mutual properties of each mesh cells around a well situated interface surface.  
 
Energy equation of phase transition is shown below (4). Presented source term of heat flux forced by 
evaporation (�� ) is coupled with heat flux source term in equation (3).  
 

 
��
�� + ∇ ∙ (#$) = &$ ∇'T � )

� *+
�  (4) 

 �� = ,�-� .� /  012 �3451246718      
-� .� /   012 �189�8:46718  (5) 

 
DT – diffusion coefficient, U is velocity vector, -� .� denotes for mass stream of evaporated medium 
condensate, and L is for a latent heat of evaporation. It was assumed that the most important in the 
heat transfer was the mechanism of diffusion and convection. The impact of radiation has been 
skipped, due to the fact of relatively small difference in temperature between solid and liquid. Two-
phase properties such as specific heat, density, and viscosity were defined as weighted average 
parameters, wherein the weight ratio of the parameter corresponds to the function of liquid fraction in 
two-phase system. The fluid flow within the domain was treated as incompressible.  
 
 � = ; �.<) + (1 � ;)�>?@ (6) 
 A = ; A.<) + (1 � ;)A>?@ (7) 
 �� = ; ��.<) + (1 � ;)��>?@ (8) 

 
Weighted average properties in two-phase system (liquid-gas), where  
A – viscosity, ; – phase fraction parameter were presented above. 

Detailed information regarding initial and boundary conditions are described in the table 1. All the 
series of calculation were performed for three different types of solid surface materials.  

 
Table 1. Boundary and initial conditions for simulation.  

Case Wall 
temperature 

Initial droplet 
temperature 

d0 Initial droplet 
velocity 

We 

1 83 K 77 K 1.0 mm 0.1 m/s  1.0 
2 83 K 77 K 1.0 mm 0.5 m/s 21.5 
3 83 K 77 K 1.0 mm 1.0 m/s 85.9 

 
A hexagonal numerical grid of dimension of 10x5x10 cm, divided into 80, 40 and 80 finite 

elements in each dimension respectively, was used. All numerical calculations were carried out by 
means of  direct numerical simulation (DNS) technique.  

4.  Model validation 
Mathematical model described above has been benchmarked in terms of fluid dynamic propagation at 
the given flow conditions, as well as for the transport of heat transfer through evaporation forced by 
nucleate boiling. Due to limited availability of information on dynamics propagation of a single liquid 
nitrogen droplet on a solid surface in literature, it was decided to compare the model with the 
experimental results available in the literature, concerning the well-known spreading dynamics of 
water drop [5]. On the other hand, evaporation of liquid nitrogen was compared with experimental 
results contained in the publications [15, 16] and performed for pool boiling. In this part, the 
achievable heat flux values in relation to the temperature difference between solid surface and liquid 
nitrogen, was treated as a comparative values. 
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Figure 2. Hydrodynamic propagation of 
impinged droplet of water – in comparison with 
[5]. 

 Figure 3. Pool boiling heat flux in comparison 
with literature data published in [15, 16]. 

 
As it can be seen, the results of fluid dynamics propagation on a solid flat surface gave a 

satisfactory compatibility to the experimental results (figure 2). On the other hand, the curve obtained 
from the simulations for pool boiling (figure 3), is in the range of experiments contained in the [15, 
16]. However, the angle of inclination of the curve obtained from numerical simulation does not fully 
covers experimental profiles. This may be due to disregarding the compressibility features of fluid in 
the above-mentioned numerical model. 

5.  Results   
The results of numerical simulations for droplet propagation in small scale have been illustrated 
below. The process of heat transfer at the time of liquid droplet formation after impact with a solid 
surface has been considered. In all simulations the time constants up to values of 30 ms were 
considered. After this time rate the formation of a droplet shape (or secondary droplets), was finished. 
It is noted that the distribution of liquid achieved small We numbers (of approx. 1.0) during the 
formation of the final shape, do not defragment into smaller particles at all. Its surface has been 
established to the final form of a hemisphere. In contrast to that, a droplet with the We values 21.5 and 
85.9 followed by a re-fragmentation (secondary breakup) of the liquid, which also affected the WCC 
and has an impact on the reached heat flux. 

Figures 4-11 show a field temperature during a droplet impact. All figures presented below are 
shown for aluminum, specified as the cooled material. 
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Figure 4. Temperature profile of the heated 
surface during impact. We = 1.0, time = 1ms. 

 Figure 5. Temperature profile of the heated 
surface during impact. We = 1.0, time = 5ms. 

 

 

 

Figure 6. Temperature profile of the heated 
surface during impact. We = 1.0, time = 10ms. 

 Figure 7. Temperature profile of the heated 
surface during impact. We = 1.0, time = 20ms. 

 
As it can be seen in Figures 8-11 with higher Weber numbers, heat transfer from the solid surface 

occurs at a much larger area in relation to the fluid dynamics at lower Weber numbers (figures 4-7). 
 

 

 

 

Figure 8. Temperature profile of the heated 
surface during impact. We = 85.9, time = 1ms. 

 Figure 9. Temperature profile of the heated 
surface during impact. We = 85.9, time = 5ms. 

 

 

 

Figure 10. Temperature profile of the heated 
surface during impact. We = 85.9, time = 10ms. 

 Figure 11. Temperature profile of the heated 
surface during impact. We = 85.9, time = 20ms. 
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The values of the heat flux obtained from the solid surface varies, depending on the initial liquid 
drop performance parameters. Numerical simulations show that the importance of liquid distribution 
and its coefficient of WCC on heat transfer process. The larger the surface area of liquid in contact 
with the solid body, the higher heat flux parameters could be achieved.  

 

 

 

 

Figure 12. Heat flux during the impact time 
for different We numbers. 

 Figure 13. Wetting contact coefficient during the 
impact time for different We numbers. 

 
It was also observed in figure 12 that the heat flux reaches its maximum value at a certain time 

after impact with the surface. Their peak values correspond to the maximal wetting contact coefficient, 
and depend on applied solid surface material (figure 14). It is also worth mentioning, that the highest 
peak of the heat flux correlate with the middle value of We in this research, not for the highest one.  

 

 

Figure 14. Peak heat flux for different materials declared as a 
boundary condition.  

6.  Summary  
The three-dimensional model of droplet evaporation was presented and benchmarked by the results of 
the experiment included in literature. The simulation results illustrate the behaviour of a single particle 
of liquid nitrogen during impact on a heated solid surface. Dynamics of liquid spilling significantly 
affect the removal of heat transfer from the surface. Heat flux rate changes proportionally to wetting 
contact coefficient. 

As it can be seen above, the cooling of the surface occurs immediately after the particle collision on 
the flat surface. Time constants of 30 milliseconds show that upon an impact, the highest heat flux 
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values are characterized by the instances at which the Weber number reaches values of 21.5 or 85.9. 
With both of those Weber numbers, fragmentation of a single droplet, which significantly enlarge the 
field of the influence, has been occurred (β above 2 – see figure 13).  
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