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Abstract. Cryostats have been developed and standardized for laboratory testing of thermal 

insulation systems in a cylindrical configuration. Boiloff calorimetry is the measurement principle 

for determining the effective thermal conductivity (ke) and heat flux (q) of a test specimen at a fixed 

environmental condition (boundary temperatures, cold vacuum pressure, and residual gas 

composition). Through its heat of vaporization, liquid nitrogen serves as the energy meter, but the 

design is adaptable for various cryogens. The main instrument, Cryostat-100, is thermally guarded 

and directly measures absolute thermal performance. A cold mass assembly and all fluid and 

instrumentation feedthroughs are suspended from a lid of the vacuum canister; and a custom lifting 

mechanism allows the assembly and specimen to be manipulated easily. Each of three chambers is 

filled and vented through a single feedthrough for minimum overall heat leakage. The cold mass 

design precludes direct, solid-conduction heat transfer (other than through the vessel’s outer wall 

itself) from one liquid volume to another, which is critical for achieving very low heat measurements. 

The cryostat system design details and test methods are discussed, as well as results for select thermal 

insulation materials. Additional cylindrical boiloff calorimeters and progress toward a liquid 

hydrogen apparatus are also discussed. 

1. Introduction 
Evaporation or “boiloff” [1–2] continues to be a valuable technique for testing the thermal insulating 

performance of materials. In the general sense, boiling is associated with higher heat transfer rates and 

evaporation is associated with lower heat transfer rates. For the subject of cryogenic thermal insulation 

testing, the properties are well within the evaporation-only regime, with peak heat flux levels, at the most, 

only several hundred watts per square meter. The heat of vaporization (hfg), also known as the enthalpy of 

vaporization or the heat of evaporation, is the energy required to transform a given quantity of a liquid into 

a gas at a given pressure. 

Cryogenic insulation systems encompass a wide range of material combinations. An insulation test 

specimen is a system, composed of one or more materials (homogeneous or nonhomogeneous, with or 

without inclusion of a gas) whose thermal transmission properties are measured through its thickness under 

subambient temperatures. 

Several cryostat instruments have been developed and standardized for laboratory testing of thermal 

insulation systems in a cylindrical configuration (table 1). Boiloff calorimetry is the measurement principle 

for determining the effective thermal conductivity (ke) and heat flux (q) of a test specimen at a fixed 

environmental condition (boundary temperatures, cold vacuum pressure, and residual gas composition). 
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Through its heat of vaporization, liquid nitrogen (LN2) or a different cryogen, serves as the energy meter to 

provide a direct measure of the heat flow rate. That is, the heat flow rate is directly proportional to the 

boiloff flow rate. Cryostat-100, a fully thermally guarded design, is an absolute (primary) type instrument 

of thermal transmission measurement. Absolute instruments produce the data by which other instruments, 

such as the comparative (secondary) Cryostat-200, can be calibrated.  

Table 1. Insulation test cryostat instruments: cylindrical configurations. 

 

Although both cylindrical and flat-plate cryostats have been standardized for laboratory operation [3], 

cylindrical configurations are better at minimizing (or even eliminating) the unwanted lateral heat transfer 

or “end effects.” Cylinders also align better with most applications, including tanks and piping. The 

vertically oriented cold mass assemblies of the cryostats can cause some convection problems when tests 

are conducted at ambient pressure, but otherwise, these assemblies provide a stable platform for testing over 

a wide range of heat flows.  

The cold pipeline test apparatus also provides an absolute thermal measurement (both ends are guarded 

with cryogen reservoirs) for below-ambient temperature testing of insulated piping systems. This horizontal 

apparatus is sloped uniformly upward to provide a high point for the boiloff flow rate at the downstream 

end [4]. Two insulated pipelines, each 12.2 m in length, can be tested in parallel. 

2. Test apparatus design and setup 

The primary instrument for testing of cylindrical specimens is the Cryostat-100. The technology is built on 

the prior technology of cylindrical calorimeters developed by the Cryogenics Test Laboratory (CTL) [5–7]. 

This apparatus is guarded on top and bottom for absolute thermal performance measurement. The basic 

schematic and a photograph of the overall arrangement, including the mechanical lift mechanism, are shown 

in figure 1. A cold mass assembly, including the top and bottom guard chambers and a middle test chamber, 

is suspended from a domed lid atop the vacuum canister, as shown in figure 2. 

Each of the three chambers is filled and vented through a single feedthrough (also connected from the 

lid) for easy operation and minimum overall heat leakage. A novel thermal break design between the liquid 

chambers [8] preclude direct, solid-conduction heat transfer from one liquid volume to another. Such 

isolation is critical for achieving very low heat measurements because even small temperatures variations 

between the liquids in the chambers can produce dramatic errors in results. The liquid within each individual 

chamber is allowed to stabilize in its natural stratified state, which makes the platform for heat flow 

measurement much more stable compared to destratified methods. All fluid and instrumentation 

feedthroughs are mounted and suspended from a top-domed lid for easy removal of the cold mass.  

Cryostat-100 includes an external heating system for bakeout and high heat load tests, as well as an 

internal heater system for fine control of the warm boundary temperature (WBT). Three custom-designed 

funnel filling tubes (7.93-mm outside diameter) interface with the three LN2 feedthroughs (12.7-mm outside 

diameter) and provide the means for cooldown, filling, and replenishment by pouring from a small 

nonpressurized dewar. The filling tubes are removed when not being used. Connected to the top ports of 

the LN2 feedthroughs are the plastic tubing assemblies that route the boiloff flow from all three liquid 

chambers to their respective mass flow meters. Vacuum instrumentation typically includes two capacitance 

Instrument Type Test Specimen Size 

ASTM Test 

Standard Environment 

Heat Flux 

(W/m2) 

Cryostat-100 

(1 unit) 
Absolute 

1 m long,  

167 mm diameter,  

up to 50 mm thick 

C1774 

Annex A1 

Full range vacuum 

77 K–353 K 
0.2–200 

Cryostat-200 

(2 units) 
Comparative 

0.5 m long,  

132 mm diameter,  

up to 50 mm thick 

 

C1774 

Annex A2 

Full range vacuum 

77 K–353 K 
1–200 

Cold Pipeline 

Test Apparatus 

(1 unit) 

Absolute 

12 m long,  

25 mm to 88 mm 

diameter 

C335 

No vacuum or 

vacuum-jacket 

77 K–353 K 

4–400 
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manometers, an ion gage, and a full-range transducer for backup. The vacuum pumping system includes a 

directly connected turbopump and a separately plumbed mechanical pump. In addition, a gaseous nitrogen 

(GN2) supply system provides purging and residual gas pressure control to vacuum levels as low at 

5 × 10−5 torr. All instruments are connected to a customized LabVIEW data acquisition system for data 

recording and monitoring. 

A custom lift mechanism, shown in figure 1, allows the cold mass assembly and insulation test specimen 

to be manipulated easily. The location of temperature feedthroughs on the lid allows the sensors to move 

with the cold mass assembly when insulation specimens are installed. 

                
Figure 1. Cryostat-100: basic schematic (left) and overall arrangement with lift mechanism (right). 

      
Figure 2. Overall system (left) and cold mass assembly (right). 
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3. Testing methodology 

The principle of heat rate measurement for Cryostat-100 is based on LN2 boiloff calorimetry, following the 

guidelines of ASTM C1774, Annex A1 [9]. The steady-state heat flow rate (Q) is the basis for calculating 

the thermal properties, including effective thermal conductivity (ke) (or system thermal conductivity [ks]) 

and heat flux (q). Any thermal performance test result is considered along with other results and other 

complementary methods [10]. The parameters of the test, the manner in which the test is set up and 

performed, and the key terminology for the reporting of data are properly documented to obtain an accurate 

technical evaluation. 

Calculations of ke are highly sensitive to the thickness of the test specimen. The thickness, as tested, is 

carefully measured or calculated, and any assumptions are explained. Thicknesses from 0 mm (bare cold 

mass) to approximately 50 mm can be tested on Cryostat-100.  

Materials can be blanket, clamshell, molded, or bulk-fill. Blankets can be applied in individual layers or 

in various layering combinations as desired, and temperature sensors are placed between the blanket layers. 

Multilayer insulation (MLI) specimens can be installed in blanket, layer-by-layer, or continuously rolled 

fashion. The temperature sensors are typically Type E thermocouples, 30-gage size, with vacuum sides at 

least 2 m long. A sleeve assembly is installed for bulk-fill materials, providing a 25 mm-thick test specimen, 

with temperature sensors at discrete points within. 

Test specimens are evacuated and heated according to approved standard laboratory procedure, which 

for MLI specimens includes five GN2 purge cycles between 1 torr and 100 torr at a temperature up to 330 K. 

The WBT, defined by the heater shroud assembly inside the vacuum can, is typically set to 293 K for a test. 

The cold vacuum pressure (CVP) within the vacuum chamber is maintained in the range of 10−6 torr (high 

vacuum) by active vacuum pumping. Various vacuum pressures are produced and precisely maintained by 

active vacuum pumping in combination with a GN2 supply system.  

The test specimens are cooled down, stabilized, and tested according to approved standard laboratory 

procedure. For all tests, the cold boundary temperature (CBT) is approximately 78 K. The steady-state 

condition is reached when the boiloff flow rates from all three chambers are stabilized, the temperature 

profile through the thickness is stabilized, and the liquid level in the test chamber is at least 90% full. A 

stable state of the system is indicated by slight oscillation of the temperature sensors with no overall trend 

in their average value [9]. The total test duration may be hours to days, depending on the level of heat flow 

involved. All test data are ordered into standardized files, by test series, for processing and archival 

purposes. 

The variation in boiloff flow rate is primarily determined by the states of the liquid masses in each of 

the cold mass chambers. The liquid can be stratified, mixed, or in transition. For steady-state measurement 

to be achieved, all liquid masses must be either stratified or mixed, and this condition is reached only by 

the inherent design of the cold mass assembly. Other important factors in boiloff flow rate stability are the 

regional variations and twice-daily fluctuations in atmospheric pressure that correlate to the atmospheric 

tides. Without systematic controls to counteract this effect, at very low heat flux rates, these fluctuations 

can influence the results by up to 20%. These fluctuations are eliminated by feeding the boiloff flow tubes 

into a custom plenum system set approximately 3 torr above the prevailing mean at atmospheric pressure 

and by controlling the back pressures of all three chambers within ±0.1 torr. 

4. Uncertainty analysis 

The rate of heat transfer through the insulation test specimen and into the side wall of the test chamber of 

the cold mass assembly (Q) is directly proportional to the LN2 boiloff flow rate (V), as given by (1),  

 
f

STP STP fg

fg

Q V h





 
   

 

 (1) 

where STP = Standard Temperature and Pressure (0 °C and 760 torr) and the right hand term is the density 

correction, if any, between the liquid and the saturated liquid conditions. The value of ke is determined from 

Fourier’s law of heat conduction through a cylindrical wall, as given by (2). 
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For cylindrical geometries, the effective heat transfer area (Ae) will be the mean area between the two 

concentric cylinders. The heat flux (q) is calculated by dividing the total heat transfer rate by the effective 

heat transfer area, as given by (3). 

 

e

Q
q

A
  (3) 

The symbols and sources of error used for calculating thermal properties from boiloff testing with the 

cylindrical instrument, Cryostat-100, are given in table 2. 

Table 2. Symbols and sources of error for the cylindrical calorimeter, Cryostat-100. 

Symbol Description Unit % Error 

V Volumetric flow rate (boiloff) at STP m3/s 0.500 

ρ Density of GN2 (boiloff) [0.0012502 g/cm3] kg/m3         n/a 

hfg Heat of vaporization J/g 2.37 

do & di Outer and inner diameters of insulation specimen m 1.53 & 1.23 

x Thickness of insulation specimen m n/a 

Le Length, effective heat transfer m 0.730 

Ae Area, effective heat transfer area  m2 n/a 

ΔT Temperature difference (WBT – CBT) K 0.894 

 

The error introduced by each parameter is taken into account for the calculation of the total error, in 

accordance with the “Error Analysis of Experiments” equation listed in Perry’s Chemical Engineers’ 

Handbook [11]. The total uncertainty in ke is calculated to be 3.3% for the Cryostat-100. The uncertainty in 

heat flux q is 3.2% (the difference being that temperatures are not part of the heat flux calculation) [12]. 

Measurement of the boiloff flow rate is made using a mass flow meter that automatically compensates for 

gas densities in the range of 273 K to 323 K and renders the density error not applicable. The mass flow 

meter output is in terms of a volumetric flow rate at STP.  

The overall error of ke is estimated for the worst-case situation. The heat of vaporization of the cryogen 

is the largest source of uncertainty, typically 2% for LN2 [13]. The repeatability should, of course, be high, 

and other factors, such as surface finish of the interior cold mass and overall cleanliness of the cryogen, are 

considered dominant. Physical measurement of the test specimen is robust because diameters and not 

thickness are part of the calculation. Thermal shrinkage effect is included in the analysis. In most testing 

situations, for a given series of tests, the overall repeatability is demonstrated to be within 2%. 

The analysis assumes that all heat flow to the calorimeter goes to vaporizing the liquid and that none of 

it sensibly heats the vapor or the liquid. The nominal value for the heat of vaporization is 199.1 J/g based 

on a saturation pressure of approximately 765 torr (0.1 psig). The vapor heating effect can be neglected for 

LN2 calorimeters with small ullage spaces (less than 20% of the total volume). The error attributable to 

vapor heating in nitrogen is estimated to be <0.1% when the results of the study by Jacobs [14] are applied. 

 

5. Example test results and discussion 

Testing technologies, methods, and experimental approaches go hand in hand with the research, 

development, and implementation of new thermal insulation systems and their high-performance material 

elements. The results of tests performed by the CTL with the cylindrical boiloff calorimeters are 

summarized in table 3. For cylindrical calorimeters, 174 material specimens have undergone more than 

1,500 individual tests, representing roughly 5 years of continuous boiloff run time. Many of these results 
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have provided the baseline data for ASTM C740 and ASTM C1774 and continue to establish the benchmark 

of comparison for both new and old thermal insulation materials. 

Table 3. Summary of cylindrical cryostat testing by number of material specimens and tests. 

Apparatus Number of specimens Number of tests Hours of run timea 

Cryostat-100 132 ~1,188 ~35,640 

Cryostat-200 42 ~378 ~7,560 

Total 174 ~1,566 ~43,200 
aTime does not include that required for evacuation and heating, purging, cooldown, or warmup. 

 

The results from several select tests with Cryostat-100 are presented in figures 3 through 5. Figure 3 

presents an example test result of a 60-layer insulation system at high vacuum. In this plot, the boiloff flow 

rates from all three chambers are shown over the 10-day duration of the test. The periodic oscillation of the 

test chamber flow rate, induced by atmospheric tides, is indicated by the regular 12-hour peaks. (Note: This 

test series did not include the atmospheric back-pressure control plenum.) Details of these and many other 

materials are given in the literature [9–10, 15].  

Figure 4 presents the layer temperature profile for a 10-layer insulation system for various CVPs. The 

profile, with all 10 layers instrumented, shows the insulating effect of high vacuum as indicated by the sharp 

temperature rise in the first millimeter of thickness (about one layer). The sensitivity to CVP is also shown 

in this plot by the flattening of the temperature plots as the vacuum level is degraded. 

Finally, figure 5 summarizes the Cryostat-100 test results for various thermal insulation systems and 

materials in terms of the variation of heat flux with CVP. Further details of these and many other materials 

are given in the literature [9–10, 15]. 

Future multilayer insulation systems are envisioned that will challenge the theoretical limit in thermal 

insulation performance (ke <0.01 mW/m-K and/or q <0.1 W/m2 for typical boundary conditions of 300 K / 

77 K in vacuum). Boiloff technology to measure ultralow heat flow is at the heart of efforts to develop and 

prove such advancements. Ultralow heat flow systems are needed for superconducting power devices, long-

duration storage of cryofuels, science instruments, space exploration craft, medical imaging equipment, and 

other performance-driven applications. 

 
FIGURE 3. Example Cryostat-100 test result of A138 MLI (60 layers: Mylar/polyester net) 

at high vacuum: boiloff flow rates from all three chambers over 10 days. Boundary 

temperatures: 293 K/78 K. The periodic oscillation of the test chamber flow rate, induced 

by atmospheric tides, is indicated by the regular 12-hour peaks. 
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Figure 4. Temperature profile for A145 MLI (10 layers: Mylar and polyester fabric) for 

various CVPs. Boundary temperatures: 293 K/78 K; residual gas: nitrogen. 

 

 
Figure 5. Summary of Cryostat-100 test results for various thermal insulation systems 

and materials: variation of heat flux with CVP. Boundary temperatures: 293 K/78 K; 

residual gas: nitrogen. 
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6. Conclusion 

Based on boiloff calorimetry, new cylindrical cryostats and methods for testing thermal insulation systems 

have been successfully developed by the CTL at NASA Kennedy Space Center over the last 20 years. These 

boiloff instruments (or cryostats) are applicable to a wide range of materials and test conditions. Test 

measurements are generally made at large temperature differences (boundary temperatures of 293 K and 

78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective 

thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cylindrical cryostat 

instruments provide an effective and reliable way to characterize the thermal performance of materials and 

systems under subambient conditions. Cryostat-100, with its thermal break cold mass design, stratified 

liquid approach, and single port filling/venting method, is an absolute calorimeter that has provided baseline 

data for dozens of materials and a foundation for future international standards for thermal insulation 

materials in cryogenic service. Proven through many hundreds of tests of different material systems, these 

insulation test cryostats have supported a wide range of aerospace, industry, and research projects. 
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