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Abstract. Genetic and distribution building algorithms with binary 
representation are analyzed. A property of convergence to the optimal solution 
is discussed. A novel convergence prediction method is proposed and 
investigated. The method is based on analysis of gene value probabilities 
distribution dynamics, thus it can predict gene values of the optimal solution to 
which the algorithm converges. The results of investigations for the optimal 
prediction algorithm performance are presented. 
 

 
Introduction.  
The genetic algorithms (GAs) efficiency depends on the fine tuning of its parameters [1]. If 

GA-user sets arbitrary parameters values, the GA efficiency may arbitrary vary from very low 
to very high. The recent trends in a field of GAs lead to adaptive GAs based on complex 
hybrid structure and efficient GAs with reduced parameters set. 

A known approach to GA parameters set reduction is Distribution Building Algorithms, 
also called Estimation of Distribution Algorithms (EDA) or Probabilistic Model-Building 
Genetic Algorithms, which replace population representation with a probability distribution 
over the choices available at each position in the vector that represents a population member 
[2, 3]. The EDAs generate solutions and control populations according to given distribution 
instead of using nature-inspired genetics-based operations. 

A straightforward way to estimate distribution for GAs with binary representation is to use 
the distribution of values equal to one over the population. Many EDA algorithms are based 
upon such kind of distribution [4-7]. 

The main objective of this work is increasing the binary GAs effectiveness by analyzing 
and exploiting the explicit information on algorithm dynamics via distribution estimation. 

In section II we discuss how distribution can be estimated for any binary-coded GA to 
analyze its dynamics and fulfill prediction of algorithm convergence point, hopefully global 
optimum point. The general prediction method and some specific realization are demonstrated 
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in section III. We have tested the proposed convergence method with a representative set of 
complex optimization problems – results are shown in section IV. 

 
Distribution estimation for search algorithms with binary representation. 
The binary representation GAs are the conventional GAs with population of fix-length 

solutions, which contain 0 or 1-value in each position. As solution is binary vector and its 
fitness (objective function value) is a real number, we can talk about pseudo-boolean 
optimization problem statement. 

One can estimate the probabilities vector for a population to present the statistics 
proceeding by search algorithm: 
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ip  is a probability of 1-value for the i-th position in solution, n is a solution length, 
i

jx  is a value of the j-th gene of i-th individual, k is a number of generation (iteration). 
We can write down the general scheme of any EDA algorithm using given probability 

distribution in the following way: 
1. Randomly generate an initial population according to the probability  

distribution. 
2. Evaluate current population. 
3. Update the distribution using the given strategy. 
4. Form a new population according to the probability distribution. 
5. Until stop criterion is satisfied, repeat steps 2-4. 
As we can see, GAs use the same scheme. The main differences have a place on steps 3-4, 

where GAs update information using such operations as selection, crossover and mutation. 
Step 3 also defines the different EDA algorithms. 

Let’s consider some classical EDA realization such as the variable probabilities method 
(“MIVER”) [4, 5], population-based incremental learning (PBIL) [6] and probabilities-based 
GA [7]. 

Variable probabilities method (“MIVER”) was first proposed in 1986 [4] and improved in 
1987 [5]. This is a stochastic optimization procedure for pseudo-boolean optimization 
problems, which works with a population of binary solutions. The distribution update strategy 
is based on 1-value distribution of the best and the worst solution in certain population. There 
exist a number of mathematical proofs of the convergence for some classes of optimization 
problems. 

Population-based incremental learning (PBIL) was proposed in 1994 [6]. This is a 
combination of the evolutionary optimization and artificial neural networks learning. PBIL 
updates the distribution in the same way as “MIVER” does – according to the 1-value 
distribution of the best and the worst solution, but using similar to neural net weights update 
procedure. 

Both PBIL and “MIVER” use greedy linear update strategy (taking into account only the 
best/worst solution), so they demonstrate much more local convergence than conventional 
GA. Thus conventional GAs performance on average is better for many complex optimization 
problems. 

Probabilities-based GA was proposed in 2005 [7]. This is a further evolution of ideas of 
variable probabilities method and PBIL. In this algorithm, genetic operators are not 
substituted with the distribution estimation, but the estimated distribution is used to model 
genetic operators. Probabilities-based GA uses the whole population to update distribution, so 
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it demonstrates the global performance as the conventional GA. Moreover, it contains less 
parameters to tune and proceeds additional information about search space (probabilities 
distribution), thus probabilities-based GA can exceed conventional GAs on average.  

We have investigated the performance of algorithms using some visual representation of 
the distribution. Each component value of the probability vector, which performs distribution, 
varies during the run, so we can show it on diagram (figure1). 

 

 
Figure 1. The value change for j-th component of probability vector 

 
As we can see the probability value oscillates about p = 0.5 (initial steps, uniform 

distribution over the search space) and then converges to value one (or zero in other case) as 
the algorithm converges to the optimal (or suboptimal) solution. 

We can estimate and visualize distribution of 1-value for any binary GA, even if GA 
doesn’t use the distribution. The distribution estimation can be performed in a following way: 
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where N is a population size. 
As different algorithms use different distribution update strategies, so we obtain different 

behavior of probabilities over the generations (figure2-5): 
 

 
Figure 2. Evolution of the probability vector component for a run of variable probabilities method 

(“MIVER”) 
 

 
Figure 3. Evolution of the probability vector component for a run of PBIL 
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Figure 4. Evolution of the probability vector component for a run of probabilities-based GA 

 

 
Figure 5. Evolution of the probability vector component for a run of conventional GA 

 
Analyzing these diagrams for different optimization problems we can find that the 

components of the probabilities vector frequently converge to value one if optimal solution 
contains 1-value in corresponding position (or to zero if optimal solution contains 0-value). It 
means that if the probability converges to one (or zero) then the value of the corresponding 
gene of the optimal solution (or a solution to which the algorithm intends to converge) most 
probably is equal to one (or zero). The higher algorithm performance the more often 
probabilities converge to the correct value.  

 
The optimal solution prediction method. 
We can express the previously mentioned feature of stochastic binary algorithms as: 
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when the algorithm's iteration number approaches infinity. Here opt
ix  is the i-th position 

value of problem optimal solution, i = n,1 . 
So we can use this feature to predict an “optimal” solution of the given problem. The 

convergence prediction method is as follows: 
1. Choose the binary stochastic algorithm (e.g. GA, PBIL or other), set the iteration 

number Ii ,...,1=  and the number of independent algorithm runs Ss ,...,1= . 
2. Collect the statistics njp s
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jp  change. 
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4. Add “optimal” solution into the current population. 
A simple way to determine the convergence tendency is the use of the following integral 

criterion on the step 3: 
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The main idea is that the more often probability value is greater than 0.5, the higher 
probability of being “optimal” solution coordinate equal to one. 

In many practical problems, a situation exists when the binary stochastic algorithm collects 
not enough information on the early steps and the gene value of the certain position is equal to 
one (or zero) for almost every current solution. At the later stage algorithm can find the much 
better solution with inverted value of genes and it means that the probability vector values 
will change their convergence direction. But the previously mentioned prediction method will 
give us the primary value, because the value of the probabilities vector was greater than 0.5 
(or less than 0.5 for zero values) for too long time. 

We propose to use the following modification of the convergence prediction method to 
avoid the above mentioned shortcoming:  

1. Set the prediction step K. 
2. Every K iteration use the given statistics iP , KNi ,1= , KtN K ⋅= , { },2,1∈t , to evaluate 

the probability vector change: 1−−=∆ iii PPP . 
3. Set the weights for every iteration accordingly to its number:  

( )12 += KKi NNiσ , KNi ,,1= . 

4. Evaluate probability vector weighted change as:  ( ) ∑
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6. Add the “optimal” solution into the current population.  
The main idea of the given modification is that the probability values on the later iterations 

have the greater weights as algorithm collects more information about search space. The 

weights should have values such that ii σσ >+1  and 1
1

=∑
=

KN

i
iσ . 

The strategies of the predicted “optimal” solution usage may vary: use it as the final 
solution, add it to the population and continue search, and so on. In this work we just added it 
in the current population without additional heuristics which can be applied here.  

 
Test Problems and Numerical Experiments. 
We have tested the proposed convergence prediction methods for discussed EDA and 

conventional GA with the representative set of complex optimization problems.  
We have included 12 known test problems of continuous optimization, 6 of them are from 

the test function set approved at Special Session on Real-Parameter Optimization (CEC 2005) 
[8]. All these functions are known as complex optimization problems and represent the 
challenge for GAs and other evolutionary algorithms. We haven’t included any well-known 
binary problem as they are less complex for fine-tuned GAs than real-value problems after the 
binarization. 
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The test problem set contains the following functions: Rastrigin and Shifted Rotated 
Rastrigin, Rosenbrock, Griewank, De Jong 2, “Sombrero” (“Mexican Hat”), Schekel, 
Katkovnik, Additive Potential function, Multiplicative Potential function and 2 one-
dimensional multi-extremal functions. 

Some functions are listed below: 
Shifted Rotated Rastrigin Function. 
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To estimate algorithms efficiency we have carried out series of independent runs of each 

algorithm for each test problem. We used the reliability as a criterion for evaluation of the 
algorithm efficiency. Reliability is the mean number of successful algorithm runs (i.e. the 
exact solution of the problem was found) over the whole number of independent runs. So we 
have computed the expected value of algorithms reliability. 

We have set the following parameters values for algorithms: 
• Accuracy (the whole binary solution length) – 40, 
• Population size – 50, 
• Generation number – 50, 
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• Independent runs number – 100. 
The settings and parameters for each algorithm (e.g. selection type in GA, learning rate in 

PBIL and others) were chosen in advance to be efficient on average over the test function set. 
The results are validated through ANOVA method, namely Mann–Whitney–Wilcoxon test. 

All result differences are statistically significant. 
First we have estimated the efficiency of convergence prediction algorithms using original 

integral criterion. Results are shows in a Table 1. The last column contains the values for the 
conventional GA without prediction. The grey cells show the best on problem value. 

 
Table 1.The reliability estimation for convergence prediction algorithm using integral criterion 

Problem MIVER PBIL 
Prob.-
based 
GA 

GA 
Conventional 

GA (no 
prediction) 

Rastrigin 23 72 88 69 85 
Shifted Rotated 
Rastrigin 4 44 36 42 24 

Rosenbrock 14 20 50 24 26 
Griewank 0 42 53 40 14 
De Jong 2 0 23 12 21 22 
Sombrero 20 45 33 39 18 
Schekel 8 40 42 50 48 
Katkovnik 14 80 52 81 76 
Additive potential 66 62 71 72 72 
Multiplicative 
potential 8 92 46 92 92 

One-dimensional 
N1 68 47 60 41 42 

One-dimensional 
N2 28 43 60 48 45 

 
As we can see, results vary: algorithms are good in some cases and less efficient in others. 

The variable probabilities method demonstrates the worst performance as it is most greedy 
algorithm and has local behavior. PBIL, probabilities-based GA and conventional GA 
performances are almost similar. So we can say that the average reliability of integral criterion 
in convergence prediction is low although this method is useful as GA with the prediction 
method shows higher performance comparing to conventional GA. 

Table 2 presents efficiency estimation results for the modified convergence prediction 
algorithm. The results show that the modified convergence prediction can essentially improve 
performance of search algorithms. The best results are achieved using the probabilities-based 
GA as it collects and proceeds more statistical information about the search space. As we can 
see in Table 2, probabilities-based GA “wins” in 7 of 12 problems (GA – 5, PBIL – 4, 
MIVER – 0). In cases when the probabilities-based GA exceeds, its reliability essentially 
better, in other cases its reliability is also high. 
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Table 2.The reliability estimation for modified convergence prediction algorithm 

Problem MIVER PBIL 
Prob.-
based 
GA 

GA 
Conventional 

GA (no 
prediction) 

Rastrigin 61 88 98 94 85 
Shifted Rotated 
Rastrigin 28 40 72 50 24 

Rosenbrock 24 41 80 38 26 
Griewank 10 51 100 58 14 
De Jong 2 8 28 70 22 22 
Sombrero 22 55 60 56 18 
Schekel 28 62 30 70 48 
Katkovnik 36 100 100 100 76 
Additive potential 76 100 98 100 72 
Multiplicative 
potential 28 100 86 98 92 

One-dimensional 
N1 70 98 75 100 42 

One-dimensional 
N2 86 100 80 100 45 

 
As we can see, the modified convergence prediction algorithm demonstrates the better 

performance. It also can essentially improve the performance of simple algorithms like PBIL 
or MIVER. The GA-based techniques can increase the reliability up to 100% even with 
complex problem.  

We have also established experimentally that deceptive problems [9, 10] are not difficult 
for GA with prediction, but GA requires a slight modification to intense mutation [11]. 

We have investigated the following mostly used trap-functions: Ackley Trap, Whitley 
Trap, Goldberg Trap, Trap-4, Trap-5, DEC2TRAP, Liepins and Vose, which are known as 
GA-hard problems.  

In this paper, we demonstrate results only for the probability-based GA as it shows the 
highest efficiency on average. We investigated two versions of algorithms: standard and one 
with the optimal solution prediction (the predicted solution is evaluated every 5 generations 
and added to population). 

The binary solution length is 100. The results are evaluated over 100 independent run. The 
parameters for algorithm (selection and mutation) are chosen in advance to be efficient on 
average over the test function set. 

In addition to the standard mutation operation, we implement the inversion operation, 
which inverts all genes in chromosome with very low probability. As numerical experiments 
shows it can help to overcome the trap attraction. 

The results are shown in a table 3. 
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Table 3. The reliability estimation on trap-functions 

Problem 
Prob.-based 

GA with 
inversion 

Prob.-based GA 
with inversion and  

prediction 
Ackley Trap 42 48 
Whitley Trap 41 40 
Goldberg Trap 53 57 
Trap-4 61 62 
Trap-5 38 49 
DEC2TRAP 78 98 
Liepins and Vose 51 50 

 
As known traps lead search algorithms in a direction away from optima, the efficiency of 

the standard search techniques (e.g. GAs) is about zero. As we can see in a table 3, the 
implementation of the inversion operator can help to avoid the traps and the usage of 
proposed prediction method improves the results.   

 
Conclusion. 
As we demonstrate in the paper, stochastic search procedures with binary representation 

(GA, PBIL and others) can be analyzed through visualization of its estimated distribution 
dynamics. We have proposed the efficient method to predict the point of convergence 
(“optimal” solution) using the results of the distribution dynamic analysis. 

Two approaches were investigated: a straightforward way of using the integral criterion 
and more complex strategy with the contribution weights calculation. As numerical 
experiments show the modified convergence prediction provides better performance, even for 
algorithms with greedy search strategy and local behavior. 

In further work we suppose to develop the prediction method and its implementation with 
other EDA and evolutionary algorithms. 
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