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Abstract. Authors consider the problem of automatic classification of the 

electronic, electrical and electromechanical (EEE) components based on results 

of the test control. Electronic components of the same type used in a high-

quality unit must be produced as a single production batch from a single batch 

of the raw materials. Data of the test control are used for splitting a shipped lot 

of the components into several classes representing the production batches. 

Methods such as k-means++ clustering or evolutionary algorithms combine 

local search and random search heuristics. The proposed fast algorithm returns 

a unique result for each data set. The result is comparatively precise. If the data 

processing is performed by the customer of the EEE components, this feature 

of the algorithm allows easy checking of the results by a producer or supplier.  

Introduction 

Supplying the electronic units of the complex technical systems with EEE components of 

the proper quality is one of the most important problems for increasing the whole system 

reliability. Moreover, for reaching the highest reliability of an electronic unit, the EEE 

components of the same type must have equal characteristics which assure their coherent 

operation. The highest homogeneity of the characteristics is reached if the EEE components 

are produced as a single production batch from a single batch of the raw materials. The 

critically important units are integrated from EEE components manufactured as a special 

production lots with special quality requirements [1, 2]. 

The characteristics of a lot of the components are checked via destructive and 

nondestructive tests [1, 3]. Data of such tests can be used for analyzing the lot homogeneity 

[3]. For splitting the EEE components into several assumed production batches, the k-means 

method can be used [4, 5, 6]. 

American and European EEE component manufacturers produce components of special 

quality classes, Military and Space [7, 8]. Russian manufacturers do not form a special class 

of components for use in space systems [1, 2]. 

The k-means problem can be classified as a continuous problem of the location theory [9, 

10, 11]. The aim is to find k points (centers, centroids, medoids) in a  d-dimensional space 
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such that the total distance from each of the data vectors (known points, measurement result 

vectors) to the nearest of k chosen centers reaches  its minimum: 

    .min,...,
2

21 ,...,1 1   
N

i ixxxk XAXXF
k

(1) 

Quality requirements of the EEE components in space systems are so high that the the 

range of characteristics measured via quality check tests is very narrow and the quality class 

and assumed production batch of each component in the lot must be determined via analysis 

of difference (distance) of test result data vectors which slightly exceed the precision of the 

measurement tools. Thus, results of each measurement form a finite (discrete) set of possible 

values defined by the measurement tool precision.  

The squared Euclidean norm is most popular distance metric used for calculating 

differences (distances) in a normalized space of characteristics [9]. Using the rectilinear 

(Manhattan) [12] norm as a distance metric in the k-means model allows to reach results of 

the same precision as the precision of data vectors. In this case, the value of each coordinate 

of the result coincides with the value of  the same coordinate of one of the data vectors [9, 

13]. Moreover, the result of the k-means problem rectilinear metric are more stable under the 

influence of the outliers in the data which exist due to measurement errors and defective 

components in the lot. Other approach which allows to achieve the results of the same 

precision as data vectors is solving the k-medoid problem [14, 15]. In this problem, the cluster 

centers which minimize the total distance are searched among the data vectors only. 

The k-means method uses the ALA procedure (Alternating Location-Allocation) which 

includes two simple steps: 

Algorithm 1. ALA procedure. 

Required: data vectors A1…AN, k initial cluster centers X1…Xk. 

1. For each center Xi, determine its cluster Ci  as a subset of the data vectors for which this

center Xi is the closest one. 

2. For each cluster Ci, recalculate its center  Xi.

.



iCyX

i x-yminargX

3. Repeat Step 1 unless Steps 1, 2 made no change in data.

Traditional usage of the k-means method with squared Euclidean metric (l2) has one 

important advantage: in this case, calculating a center of a cluster is a simple problem solved 

in one iteration as calculating the mean value for each coordinate of all data vectors in the 

cluster. These mean values are coordinates of the new cluster center [9]. If the ith cluster 

center Xi=(xi,1,…,xi,d) is a vector in a d-dimensional space and data vectors Aj=(ai,1,…,aj,d), 

N,j 1  also have d dimensions then the new cluster center is calculated as [9]: 

d,k,C/y'x ikCyk,i i
1  . 

In the ALA procedure with the rectilinear metric, each coordinate of the cluster center is 

calculated as the median value of this coordinate among all data vectors which belong to the 

cluster. This process can be described as follows. 

Algorithm 2. Calculating ith cluster center (median) in case of the  l1 metric. 

1. For each d,k 1 do:
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1.1. Sort vectors   id,j,ji Ca,...,aA  1
in acceding order of the  kth coordinate, form a 

sequence 
k,Ck, i

'a,...,'a1 . Here, iC  is the power of the set (cluster). 

1.2. Calculate .
C

m i










2
 Store k,mk,i 'a'x  . Here,    is the integer part.

1.3. Next iteration 1. 

2. Return  d,i,ii 'x,...,'x'X 1

This algorithm returns a value of new center which has values of each coordinate 

coinciding with a coordinate of some data vector. 

In the case of the k-medoid problem, procedure of determining of each cluster center 

requires the exhaustive search among all data vectors in the cluster. However, many 

researchers propose faster analogous local search procedures [17, 18, 19] which do not 

guarantee an exact solution. 

Except special cases, the k-means and k-medoids problems are NP hard and require global 

search [20].  

The result of the ALA procedure depends on the choice of the initial cluster centers. 

Known k-means++ algorithm [21] has an advantage in comparison with the chaotic choice of 

the initial centers and guarantees the statistical preciseness of the result O(log(p)). However, 

such preciseness is insufficient for many practically important problems. For such cases, 

researchers propose various recombination techniques for initial center sets [9]. 

The ALA procedure can be optimized with use of many techniques. For example, sampling 

procedures [22] solve the k-means problem for the randomly selected subset of the data 

vectors and use the achieved result as an initial set of centers for solving the original problem. 

Authors propose various algorithms for streaming data processing [4] applicable for big data 

analysis and many other methods. 

The dependence of the results of the ALA procedure on the initial centers seeding is a 

serious problem for the reproducibility of the classification algorithm results: depending on 

the initial centers seeding, different algorithm starts classify the same data vectors as elements 

of various clusters. For the EEE component production batches classification problem, this 

means that various EEE component belong to the same or different production batches 

depending on the initial seeding. Thus, an algorithm for solving k-means problem which 

returns a stable result is preferred. 

The Information Bottleneck Clustering method (IBC) is a deterministic method for solving 

the cluster analysis and classification problems able to achieve perfect results in many 

cases.[23]. This algorithm starts from considering each data vector as a separate cluster. Then, 

clusters are removed one-by-one until the desired clusters quantity remains. Each time, the 

algorithm eliminates such cluster that its elimination gives the smallest increment of the 

objective function value. For the k-means problem, this algorithm eliminates the cluster center 

which gives the smallest total distance from data vectors to the closest remaining centers. 

Such algorithms are extremely slow [23]. The genetic algorithms with greedy heuristic 

initially designed for the discrete k-median problem on a network [24] are compromise 

variants. However, they are not determined algorithms. In [25], author proposes an approach 

for adaptation of these algorithms for the continuous location problems. The idea of such 

approach can be described as follows [10]. 

Algorithm 3. Genetic algorithm with greedy heuristic for k-median problems. 

Required: data vectors A1…AN, population size Np. 
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1. Form (randomly or using the k-means++ procedure) Np various initial solutions

},1,{,...1 Nχχ
pN     pi ,Ni==kχ 1 . Each of such solutions is a set of k data vectors used as the 

initial solutions of the ALA procedure. Calculate the fitness function value (total distance) 

 χFfitness  for each of the initial solutions using Algorithm 3 and store the fitness function

values to .,...,ff
pN1  

2. If the stop conditions are satisfied then STOP. Return solution *i
χ , with the smallest 

value fi. For the final solution, th ALA procedure (Algorithm 1) runs. 

3. Choose randomly two indexes 2121 }1{ k,k,Nkk ,  . 

4. Form an interim solution
21 kkc χ=χχ  . 

5. If  >kχc  then go to Step 7: 

6. Calculate  }{nim j\χFarg=j cfitness
c
χj

*


. Exclude *j  from cχ : .j\=χχ *

cc }{   Go to Step 5. 

7. If  cip =χ:χ,Ni }1{ then go to Step 2. 

8. Choose index }1{3 p,Nk  . First, two indexes }1{54 ,Nkk ,   are chosen randomly, then if 

54 kk >ff then 43=kk else 53=kk . 

9. Replace
3kχ  and the corresponding fitness function value: ck =χχ

3
,  cfitnessk χ=Ff

3
. Go 

to Step 2. 

Steps 5-6 of this algorithm realize the greedy heuristic, the successive elimination of the 

centers from an interim solution. 

An analogous heuristic was proposed by Kuehn and Hamburger in 1963 [16]. The IBC 

method is based on the same principle of the successive elimination of the clusters from an 

interim solution [23]. Both method of Kuehn and Hamburger and the IBC chose an unfeasible 

solution coinciding with the whole data vectors set as the initial solution. 

The fitness function for the k-means problem can be calculated for an initial or interim 

solution as follows: 

Algorithm 4. Calculating fitness function value  χFfitness .

Required: solution χ . 

1. Run Algorithm 1 with initial centers set }{ χ|iAi   resulting with centers set }{ 1 p,...,XX . 

2. Return  
 

 .,AXLw=χF ij
,kj

i

N

ifitness
1

1 min



This algorithm is a computationally intensive procedure. Other approach [25] is based on 

the immediate usage of the total distance from data vectors to the closest center in the interim 

solution as the fitness function value for Algorithm 3 . In this case, Step 1 of Algorithm 4 is 

omitted. In fact, this approach solves a k-medoid problem and adjusts the solution with the 

ALA procedure at the final iteration of the greedy heuristic. Such approach is much faster. 

However, it reduces the preciseness. 

An advantage of the IBC method is its determinancy. This method does not use any 

random values and each start of the algorithm results in the same set of cluster centers. The 

quality checks of the EEE components lots is a process which involves two parts, a 

manufacturer or supplier and a customer or a specialized testing center. The calculation 
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performed by the customer must be reproducible. The exact reproduction of the results is 

impossible when using algorithms which include random search elements. The IBC method 

slows down the calculation.  

In [11], authors propose a modification of the greedy heuristic used in Step 6 of Algorithm 

3. This method uses points in the d-dimensional space instead of data vector indexes as an

alphabet of the genetic algorithm. Such points represent the cluster centers. Authors entitle 

this modification Algorithm with Floating Point Alphabet. Results of the genetic algorithm 

with this heuristic are much more precise than results of the modification described in [25] (in 

[25], authors propose solving a k-medoid problem). At the same time, the iterations in 

Algorithm 3 with this heuristic are performed much faster than Algorithm 4 as the greedy 

heuristic. Moreover, decrease of the computational complexity of Step 6 of Algorithm 3 

makes solving large-scale problems possible. In [11], authors report results of solving 

problems with up to 560000 data vectors. Such heuristic can be described as follows. 

Algorithm 5.  Greedy heuristic for the GA with floating point alphabet (used instead of 

Steps 4-7 of Algorithm 3). 

Required: set of data vectors d
N,...,AAV= R)( 1  , number k of clusters, two "parent" center 

sets 
1k

χ  and 
2kχ , parameter  . 

1. Form interim solution
21 kkc χ=χχ  . Run ALA algorithm from initial solution cχ . Store 

its result to cχ . 

2. If k=χc  then start ALA procedure from initial solution cχ , STOP and return cχ . 

 2.1. Calculate distances to the closest element of cχ : 

Form clusters around each  center in .χc   .,1,minarg NiAXLC i
X

i

c




Calculate distances from each data vector to the second closest center in .cχ  

 
  .,1,min

\
NiAYLd i

CY
i

ic




 

3. For each center cχX  , calculate     .\
: 


iCXi iicX dDXF

4.1. Calculate    1,max kn c  . Sort values X  in acceding order and choose a 

subset  


 ne XX ,...,1lim  of  n  data vectors with minimal values X . 

4.2. For each  lim,2 ej  do:  if   11  j,q  :    minqj LX,XL   then eliminate Xj  

from set 
lime . Here,      

qj
X

XXLXXLL
c

,,,maxminmin


 .

4.3. Set lim\ ecc  . 

4.4. Reallocate data vectors to the closest centers:   .,1,minarg* NiAXLC i
X

i

c




4.5. For each cχX   if  N,i 1 : Ci=X and XC*
i  then recalculate center X

*
 of cluster

 NiXCAC ii

clust

X ,1,| *  . Store     XXcc  *\ . 

  .,1,min NiAXLd i
X

i
c



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5. Go to Step 2.

Value   is an important parameter of this heuristic. This value determines the percentage 

of the superfluous cluster centers eliminated in a single iteration. Authors propose value 0.2. 

Bigger values make the algorithm run faster and reduce its preciseness. Small values   make 

it work as Algorithm 4 and eliminate a single center at each iteration. We used  =0.25. 

This heuristic combines the greedy heuristic [24, 25, 3] with elements of the modified 

ALA procedure performed at each iteration and  allows to eliminate up to 20-25% superfluous 

cluster centers until the required quantity of centers remains. Algorithm 4 requires performing 

p(k0-k) runs of the ALA procedure (here, k0 is the initial centers quantity). Algorithm 5 

reduces quantity of iterations down to O(log(k0-k)). Moreover, each iteration does not require 

performint the whole ALA procedure. Instead, its separate optimized elements (location – 

allocation) are performed. 

It can be easily seen that if k0=N then both Algorithm 5 and IBC method start their initial 

iterations analogously: number of cluster centers coincides with the number of data vectors. 

Moreover, if k0=N  then choosing th initial centers is not random: all data vectors are chosen 

as the initial centers. Thus, the following deterministic algorithm can be proposed. 

Algorithm 6. New deterministic greedy heuristic algorithm. 

Required: set of data vectors d
N,...,AAV= R)( 1  , number k of clusters, parameter  . 

1. Set V=χc . 

2. Run Algorithm 5 starting from Step 2.

Such algorithm was successfully applied for middle-scale problems, up to N=6500 data 

vectors. The results are gathered in Table 1. We used example problems from the UCI library 

[26] and problems with real data of EEE components examination. For small-scale problems, 

the results are shown in comparison with the IBC method, genetic algorithm with greedy 

heuristic and genetic algorithm with recombination of fixed length subsets. We used various 

distance metrics. In addition, k-medoid problems [14, 15] were solved. For several problems, 

the results of new algorithm are insignificantly worse than the results of the IBC. At the ame 

time, time needed for problem solution reduces many times. In Table 1, all results of new 

algorithm are shown for 250.  and 0010. . Last value makes the algorithm work as an 

IBC procedure which eliminates exactly one center at a time. At the same time, the approach 

to the inclusion of elements of the ALA procedure in this greedy heuristic remains unchanged 

and the new algorithm with 0010.  works slower than one with 250.  and still much 

faster than the IBC algorithm which uses Algorithm 4 for fitness function evaluation on each 

iteration. In addition, Table 1 shows results of thee simplified IBC method which evaluates 

the fitness function value without running ALA or another local search procedures. In fact. 

This simplified IBC procedure solves a k-medoid problem and then adjusts the result with 

ALA procedure. Such algorithm is entitled “IBC w/o local search”. Such algorithm can be 

constructed after excluding Steps 3 and 4.5 from Algorithm 5 with 0010. . If we remain 

250. , i.e..we allow simultaneous eliminating several centers, we have a new deterministic 

algorithm entitled «IBC w/o local search, 250. ». This version of the algorithm shows the 

best time and the worst preciseness. 

For all inspected problems except those with the Jaccard metric, new algorithm shows the 

best results among all considered deterministic algorithms except IBC with local search which 

exceeds new algorithm by preciseness in several problems. However, new algorithm takes 

much less time. Results of new algorithm are less precise than the results of evolutionary 

algorithms. However, except problems with the Jaccard metric, the difference does not exceed 
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2.3% for problems with real data vectors and 3.8% for problems with Boolean data vectors. 

Note that new algorithm has one important feature for solving a problem of automatic 

classification of the EEE components. Such problem is solved [3] as series of the k-means 

problems with maxmin k,kk   where kmin=1 (a single production batch without clusters  

assumed) and kmax is chosen by a decider equal to some reasonable number. Algorithm 6 can 

be used for the k-means problem with k=kmax. Then, starting from Step 2, Algorithm 5 can run 

again for solving the succeeding problems until k=kmin. Thus, results for all values 

maxmin k,kk   can be calculated in a single run. 

 

Table 1. Comparative results of new algorithm. 

Data set, 

quantity of 

data vectors, 

dimension, 

data type 

Clusters 

q-ty k, 

metric, 

problem 

type 

Algorithm Result Time, 

sec. 

Std. 

devition 

of 10 

runs  

Chess (UCI), 

N=3197, 

d=50, 

Boolean 

50, l1, k-

сред-

них 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

10020.2 

9328.4 

9290 

- 

9796 

10057 

9649 

9610 

35 

35 

35 

- 

29.24 

0.696 

0.694 

34.52 

19.11 

6.066 

9.148 

- 

 

Determ. 

Determ. 

Determ. 

Examination 

of diodes, 

N=701, 

d=18,real 

30, l1 

нор-

миро-

ван., k-

сред-

них 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. Point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

5451.79 

5427.32 

5381.55 

5390.12 

5494.05 

5483.89 

5420.67 

5414.06 

35 

35 

35 

2251.1 

0.686 

0.111 

0.0669 

0.8962 

4,158 

6,31 

1,46 

Determ. 

Determ. 

Determ. 

Determ. 

Determ. 

Examination 

of  diodes, 

N=701, 

d=18, real. 

30, l2
2
 

nor-

mali-

zed., k-

medo-

ids 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. Point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

1950.52 

1887.29 

1885.79 

1902.93 

1917.14 

1959.97 

1918.56 

1912.43 

7 

7 

7 

1062.1 

0.637 

0.0324 

0.039 

0.6696 

5,362 

4,11 

1,457 

Determ. 

Determ. 

Determ. 

Determ. 

Determ. 

Examination 

of chip 

1526LE2, 

N=620, 

d=120, real 

30, l2
2
 

nor-

mali-

zed., k-

means 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. Point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

12873.22 

12536.19 

12539.5 

12556.04 

12727.13 

12788.47 

30 

30 

30 

4453.9 

0.5484 

0.0088 

50,71 

3,11 

2,59 

Determ. 

Determ. 

Determ. 
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New algorithm,
 

250.  

New algorithm, 0010.  

12834.9 

12682.32 

0.1258 

0.7528 

Determ. 

Determ. 

 

Data set, 

quantity of 

data vectors, 

dimension, 

data type 

Clusters 

q-ty k, 

metric, 

problem 

type 

Algorithm Result Time, 

sec. 

Std. 

devition 

of 10 

runs  

MissAmeric

a1 (UCI), 

N=6480, 

d=16, 

integer 

100, l2
2
, 

k-сред. 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

717488.7 

698055.6 

698054.5 

- 

715762.6 

716150.6 

707529.5 

703786.4 

60 

60 

60 

- 

159.8 

1.85 

2.02 

199.5 

1107.24 

460.62 

406.42 

- 

Determ. 

Determ. 

Determ. 

Determ. 

PimaIndians 

Diabetes 

(UCI), 

N=768, d=9, 

real 

30, l2
2
, 

k-means 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

2072.425 

2045.196 

2045.365 

2043.481 

2096.06 

2144.771 

2087.46 

2056.35 

36 

36 

36 

1150.1 

0.81 

0.031 

0.042 

1.058 

2.4422 

1.7294 

1.238 

Determ. 

Determ. 

Determ. 

Determ. 

Determ. 

Breast 

Cancer 

(UCI), 

N=699, 

d=10, 

cathegories 

20,  Jac-

card, k-

medo-

ids 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. point alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

184.1 

172.81 

172.62 

177.5 

174.4 

174.6 

175.2 

175.7 

5 

5 

5 

370.16 

0.8898 

0.8072 

0.437 

0.7352 

0.8725 

0.365 

0.0787 

Determ. 

Determ. 

Determ. 

Determ. 

Determ. 

Zoo (UCI), 

N=101, 

d=10, 

cathegories 

10, мет-

рика 

Жак-

кара, k-

medo-

ids 

Local search multistart 

GA with fixed subsets recomb. 

GA with floating point 

alphabet 

IBC 

IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

6.4285 

6.4118 

6.4118 

6.4706 

6.4706 

6.4706 

6.4706 

6.4706 

1 

1 

1 

4.533 

0.015 

0.010 

0.009 

0.012 

0.0287 

0 

0 

Determ. 

Determ. 

Determ. 

Determ. 

Determ. 

Ionosphere 

(UCI), 

N=351, 

d=35, real. 

10, L1, 

k-means 

Local search multistart 

GA with fixed subsets recomb. 

GA with float. point alphabet 

IBC 

2530.40 

2526.77 

2527.00 

2536.06 

4 

4 

4 

76.13 

2.117 

0.0257 

0.0082 

Determ. 
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IBC w/o local search 

IBC w/o local search,
 

250.  

New algorithm,
 

250.  

New algorithm, 0010.  

2546.54 

2572.40 

2531.03 

2533.31 

0.1124 

0.0198 

0.025 

0.151 

Determ. 

Determ. 

Determ. 

Determ. 

Conclusion 

Proposed algorithm allows solving k-means and k-medoids problems in  appropriate time. 

Achieved results are insignificantly less precise than the results of the evolutionary 

algorithms. However, new algorithm is deterministic and this fact makes its results easy for 

checking and interpreting by all concerned parts. The preciseness and effectiveness of the 

program realization of new algorithm allow solving the problem of classifying the EEE 

components by production batches based on the quality examination test data.  
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