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Abstract. The article considers various optimization models for constructing 

patterns in the method of logical analysis of data. Application techniques of the 

proposed models are specified and comparison of their classification against 

the accuracy on the task of predicting complications of myocardial infarction is 

provided  

Introduction 
The main object of the research conducted by the authors is the method of logical analysis 

of data derived from the theory of combinatorial optimization [1]. This method was 

successfully used to solve a number of problems in various areas [2-4]. It belongs to rule 

based classification algorithms and is based on identification of logical patterns from the 

original data sample. The original sample consists of two disjoint sets Ω
+
 and Ω

−
 of

observations which are n-dimensional vectors belonging to positive or negative class 

respectively. Vector elements, also called attributes, can be numerical, nominal or binary. The 

goal is to determine the class for some new observation, which is also a vector of n variables. 

To achieve this goal, a classification model is to be developed, which consists of a set of 

patterns identified from the original data sample. Each pattern should be informative, i.e. 

covers a number of objects of the same class and does not cover (or coves a small amount of) 

the objects of another class [5]. 

This paper offers several optimization models for constructing a pattern in order to build an 

adequate classifier able to classify a new incoming object, i.e. an object, previously not 

participating in its building. 

Model for constructing patterns with maximum coverage 
The considered method is used for working with data samples, where attributes take binary 

values. Since the original sample can consists of different types of attributes, it needs 

binarizing. In this paper the “unitary” binarization method is used, discussed in detail in [6]. 

The notion of a pattern [7] is used as the basis for the considered method. A positive 

pattern can be defined as a subcube of the space of binary variables B2
t
, and this subcube

intersects with the set Ω
+
 and has no common elements with the set Ω

−
. A negative pattern is

defined similarly. 

*
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The positive ω-pattern for ω{0,1}
t
 is a pattern, which contains ω points. The problem is

to find the maximum ω-pattern for each point ωΩ
+
, i.e. covering the largest number of

points in Ω
+
.

Let us define the corresponding subcube using variables yj: 



 


case.another in   ,0

subcube, in the fixedcriterion th  if  ,1 i
y j

That is, by fixing l variables of the original cube with dimension t, we get a subcube with 

dimension (t−l) and with the number of points 2
t−l

.

Requirement, which says that a positive pattern should not contain any points in Ω
−
,

demands that for each observation ρΩ
− 

 variable yj takes on a value 1 at least for one j,

where ρj ≠ ωj: 
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For increasing stability to faults, the constraint may be strengthened by replacing the 

number 1 on the right side of the constraint on the positive integer d. 

On the other hand, a positive observation of σΩ
+
 is included in the considered subcube

when the variable yj takes on a value 0 for all indices j, where σj ≠ ωj. Thus, the number of 

positive observations covered by a ω-pattern can be calculated as: 
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Thus, we have the problem of constrained pseudo-Boolean optimization with 

algorithmically defined functions: 

max,)1(
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 for any  ,  t
y 0,1 . (2) 

The problem of finding the maximum negative pattern is formulated similarly. 

Each pattern is characterized by two parameters: coverage, i.e. the number of objects of a 

particular class, which are covered by this pattern; and degree, i.e. the number of variables 

involved in its formation. Specificity of recognition problems encountered in practice is in the 

fact that a database includes a large number of unmeasured values (missing data), and 

performed measurements may be inaccurate or incorrect. Noises and outliers can lead to the 

situation where objects of different classes overlap each other, thus entering to the "field" of 
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the opposite class. As a result, obtained patterns have a greater degree and substantially less 

coverage, than in case of no outliers and inaccuracies. At the same time the classifier consists 

of a large number of small patterns (with a small coverage). It does not allow constructing an 

effective classifier with «well-interpreted» conventions (in which a small number of attributes 

are involved) and with high accuracy recognition. 

To increase the stability of the method to outliers, the constraint (2) should be relaxed. It 

means creating possibilities for a pattern to cover some small number of objects of another 

class. Then, the degree of obtained patterns reduces and coverage is increased. 

Thus, the constraint of the optimization model may be wrighten as follows: 

Dz

Ωρ

ρ 


, (3) 

where 
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D is the number (non-negative integer) of objects of another class which are allowed being 

covered by the pattern [8]. 

The procedure of growing patterns to increase their informativeness 
In accordance to models 1 and 3, the most preferred patterns are those with the greatest 

coverage. As a result the formed patterns have small degree, i.e. consist of a small number of 

terms and use only some attributes [8]. 

Patterns with small degree correspond to large areas in the attribute space. This leads to the 

possible covering of objects of another class (missing in the training sample) and increasing 

the number of incorrectly recognized objects. This feature can influence on pattern 

informativeness reducing it. Therefore, to increase informativeness, we propose the growing 

procedure for patterns. The growing procedure is applied to each built pattern and means 

maximizing degree of patterns under fixing coverage: 

max
1


t

=j

jy , 

)()( Y=fcYfc ' , 

where )(Yfc  is value of the objective function (1) (coverage) for the pattern before the 

growing procedure, )(Yfc' is value of the objective function for the pattern after the growing 

procedure. 

As a result of the growing procedure, patterns with maximum coverage and with 

higher degree are formed, thereby increasing reliability of decisions made by the classifier 

obtained accordance to this heuristic. Reliability of decisions is growing due to increased 

informativeness of patterns, as the number of objects of "own" class (the value of the 

objective function for the pattern) remains unchanged, and the number of objects of another 
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class covered by pattern decreases. Thus, the growing procedure contributes to increasing 

informativeness of each pattern and, consequently, the classifier in general. 

Model for formation of patterns with various covering 
The approach proposed consists in modification of the objective function (1) in order to 

increase various of patterns in the classifier [9]. 

The objective function (1) maximizes coverage for each formed pattern, capturing objects 

that are typical representative of the class, while atypical objects of the class remain 

uncovered and the classifier has no patterns comprising this objects. Therefore, we obtain a 

set of similar patterns for the class, thereby reducing the quality of classification. To obtain a 

classifier with higher various in patterns that allows to select substantially different subsets of 

objects, it is proposed to modify the objective function (1) for finding the positive pattern as 

follows: 

 

max,)1(
1

 







S

jj

t

j

jyK     (4) 

 

where Kσ is weight of positive observation σΩs
+
; this weight should be decreased if this 

observation is covered by the pattern, thereby this reduce participation priority of the 

observation in the formation of the next pattern for the sake of uncovered observations.  

Similarly, the objective function in the optimization model is formed for finding negative 

patterns. 

In order to use the optimization model with the objective function (4) for the constructing 

patterns, it is necessary to assign initial weights for all objects and to define rule for weight 

changes for objects that taken part in formation of the current pattern. The initial weights are 

proposed to equate to 1 for each object in the training sample. The rule for weight changes for 

object which took part in the formation of the current pattern: 
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N
K=K i+i , 

 

where Ki, Ki+1 – weights of the covered object in the formation of the current and next 

patterns; Nmax – parameter defined by the researcher, it means the maximum number of 

patterns covering the object of the training sample in the classifier. 

Thus, using the optimization model with the objective function (4) and the constraint (3) 

for constructing patterns leads to various patterns obtained. 

 

Results 
To compare the proposed models of patterns formation, a series of experiments is 

conducted on the problem of predicting complications of myocardial infarction (MI): 

ventricular fibrillation (VF), atrial fibrillation (AF), pulmonary edema (PE) [10].  

Previously, the problem of predicting complications of MI was solved with use of artificial 

neural networks [10]. It was observed that the classifier gives decisions which are not good 

enough in case of a significant difference in the number of objects of each class in the original 

sample, therefore, the following approach was proposed in that paper to solve this problem. 

The number of patients with certain complication (positive objects) is approximately ten times 
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less than the number of patients without the complication (negative objects). The original 

sample (1700 objects) was divided into the test sample and 10 training samples for each 

complication. Furthermore, the positive objects in training samples remain the same and 

negative objects change. The classifier was trained at each training sample separately, but it 

was tested on total test sample. The final decision on each object of the test sample is made by 

the majority of votes received from all classifiers obtained on the basis of 10 training samples. 

For constructing patterns the following four optimization models was used: 

1) rigid model that does not allow covering objects of another class by the pattern;

2) relaxed model, which allows the pattern to cover some limited number of objects of

another class; 

3) modified model including the procedure of growing patterns;

4) model for formation of patterns which covering substantially different subsets of the

sample objects. 

For finding suboptimal solutions in accordance with optimization models used, heuristic 

algorithms of constrained pseudo-Boolean optimization described in [11-13] and 

implemented in the software application [14] was applied. 

Classifier forms when combining all built positive and negative patterns. 

The following decision rules were used to classify a new (or test) observation [5]: 

1) If the observation satisfies the requirements of one or more positive patterns and does

not satisfy the requirements of any negative pattern then it is classified as positive. 

2) If the observation satisfies the requirements of one or more negative patterns and does

not satisfy the requirements of any positive pattern then it is classified as negative. 

3) If the observation satisfies the requirements p' from p positive patterns and q' from q

negative patterns then sign of observation is defined as qqpp '' //  . 

4) If observation does not satisfy the requirements of any patterns, positive or negative, it

belongs to class having the lowest price error. 

The number of patients with complications (positive objects) and without complications 

(negative objects) in the training sample and volume of the test sample for all considered 

complications of MI are presented in table 1. 

Table 1. Volume of each sample for all complications of MI. 

Problem 
Number of positive 

objects 

Number of negative 

objects 

Number of objects of 

testing sample 

VF 70 181 30 

AF 170 180 50 

PE 159 173 39 

Results of the tests are presented in tables 2-4. 

Table 2. Classification results for the problem of predicting VF. 

Optimization problem 

Set of 

conditi

ons 

Numbe

r of 

conditi

ons 

Covering 

of negative 

objects 

Covering of 

positive 

objects 

Degree of 

condition

s 

Classificati

on 

accuracy, 

% 

The objective 

function (1), 

neg. 161 14 0 5 90 

pos. 60 0 14 3 78 
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delimitation (2) 

The objective 

function (1), 

delimitation (3) 

neg. 161 26 5 5 90 

pos. 60 5 22 3 78 

The objective 

function (1), 

delimitation (3) with 

building procedure 

neg. 161 26 3 6 90 

pos. 60 3 22 4 83 

The objective 

function (4), 

delimitation (3) 

neg. 54 16 5 6 80 

pos. 51 5 18 5 83 

Table 3. Classification results for the problem of predicting AF. 

Optimization problem 

Set of 

conditi

ons 

Numbe

r of 

conditi

ons 

Covering 

of negative 

objects 

Covering of 

positive 

objects 

Degree of 

condition

s 

Classificati

on 

accuracy, 

% 

The objective 

function (1), 

delimitation (2) 

neg. 150 13 0 6 73 

pos. 150 0 13 5 58 

The objective 

function (1), 

delimitation (3) 

neg. 150 27 5 7 80 

pos. 150 5 27 6 68 

The objective 

function (1), 

delimitation (3) with 

building procedure 

neg. 150 27 4 9 80 

pos. 150 4 27 6 68 

The objective 

function (4), 

delimitation (3) 

neg. 82 16 5 6 67 

pos. 87 5 16 5 58 

Table 4. Classification results for the problem of predicting PE. 

Optimization problem 

Set of 

conditi

ons 

Numbe

r of 

conditi

ons 

Covering of 

negative 

objects 

Covering of 

positive 

objects 

Degree of 

condition

s 

Classificati

on 

accuracy, 

% 

The objective 

function (1), 

delimitation (2) 

neg. 152 18 0 7 62 

pos. 141 0 14 4 82 

The objective 

function (1), 

delimitation (3) 

neg. 152 36 5 7 68 

pos. 141 5 29 4 89 

The objective 

function (1), 

delimitation (3) with 

building procedure 

neg. 152 36 4 9 68 

pos. 141 4 29 5 89 
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The objective 

function (4), 

delimitation (3) 

neg. 67 16 5 6 62 

pos. 73 5 16 4 93 

Conclusion 
Tables 2-4 show that applying constraint (3) in the optimization model when searching for 

patterns allows finding patterns with higher coverage and a more accurate classifier is 

constructed on the basis of these patterns. Application of the considered approach is proper 

for solving problems with the existence of outliers and noises and with a lot of omissions in 

the data samples. 

As a result of application procedure of growing patterns, the patterns with maximum 

covering and with higher degree are obtained, thus increasing reliability of the decisions made 

by the classifier constructed on the basis of these patterns. Increase in reliability of decisions 

occurs due to growth of informativeness of patterns. This is due to the fact that the number of 

the covered objects of own class remains unchanged but the number of the covered objects of 

another class decreases. 

Application of the objective function (4) in the optimization model allows simplifying the 

classifier, thus reducing the number of patterns in it with respect to the complete set of 

patterns.  
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