
THE PSEUDO-BOOLEAN OPTIMIZATION APPROACH

TO FORM THE N-VERSION SOFTWARE STRUCTURE
*

I V Kovalev, D I Kovalev, P V Zelenkov, A A Voroshilova

Siberian State Aerospace University named after Academician M.F. Reshetnev

31 “KrasnoyarskiyRabochiy” prospect, Krasnoyarsk, 660037, Russia.

Е-mail:zelenkov@sibsau.ru

Abstract. The problem of developing an optimal structure of N-version

software system presents a kind of very complex optimization problem. This

causes the use of deterministic optimization methods inappropriate for solving

the stated problem. In this view, exploiting heuristic strategies looks more

rational. In the field of pseudo-Boolean optimization theory, the so called

method of varied probabilities (MVP) has been developed to solve problems

with a large dimensionality. Some additional modifications of MVP have been

made to solve the problem of N-version systems design. Those algorithms take

into account the discovered specific features of the objective function. The

practical experiments have shown the advantage of using these algorithm

modifications because of reducing a search space.

1. Introduction

The use of N-version programming approach turns out to be effective, since the

system is constructed out of several parallel executed versions of some software module [1,2].

Those versions are written to meet the same specification but by different programmers.

Where, the writing process of each version of concrete software module in any way must not

intersect with or depend on another version code writing.

The problem of developing the optimal structure of an N-version software system

(NVS) is the following [3]: to choose a set of software modules, so as to provide the highest

reliability for the system subject to the budget constraint. Since a description of any possible

system configuration is made through such the positioning of its components [4,5], we can

say that an observed problem has the binary essence [6]. Moreover, the existing theory of

pseudo-Boolean functions and their optimization contains strong tools for solving problems of

this kind [7]. And that fact makes the use of binarization algorithms more affordable.

The process of a problem binarization consists in setting relationships between the

system states and the binary space elements. In the case of our system model, we need to

determine some Boolean vector the elements of which will characterize the system structure.

Each element of such the Boolean vector will signify either presence or absence of

corresponding system component [8].

To derive an optimal dependability solution by means of an systematic, the exhaustive

comparison algorithm would mean that all potential system configurations have to be

tentatively generated, checked for the fulfillment of the side conditions and processed to

*
The research was done with the financial support of the Ministry of Education and Science of the Russian

Federation in accordance with the agreement № 14.574.21.0041, unique identifier RFMEFI57414X0041

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

compute the corresponding overall system reliability. This usually would cause a computing

complexity that is untractable even for the most modern high speed computers: if, e.g., we

consider a system consisting 64 modules, all of which are to be triplicated, thereby selecting

each of the module versions from 5 different candidate modules, we would have to consider
6464 10]!2!3!5[ different system configurations! Assuming e.g. 1 nsec for processing each

system configuration (of course, a value by far too optimistic!), the resulting 10
55

 sec of

needed computation time would exceed the estimated age of the universe of about 10
17

 sec by

many orders of magnitude! Therefore, here only stochastic search methods appear possible to

provide, in a heuristic way, an optimal solution [9-12].

2. The Method of Varying Probabilities

In the field of pseudo-Boolean optimization theory, the so called method of varied

probabilities has been developed to solve complicated problems, especially those ones with a

large dimensionality [6-8]. The method of variable probabilities (MVP) presents a family of

heuristic algorithms based on the common scheme: in order to find an extremal solution of a

pseudo-Boolean optimization problem, a probability vector of dimensionality of sought

solution vector is formed. Each component of the probability vector presents a probability of

assigning a one value to the correspondent component of a Boolean vector. In the terms of

developing NVS structure, it looks like a probability to include a version-candidate into the

system structure.

The initial values of the probability vector components describe a situation when every

software version has the equal probability to be included into the system structure. Then, at a

computational phase, random decisions are generated according to the probability distribution

specified by means of the probability vector. Each time the objective function is calculated in

several random points, the values of the probability vector components are updated, so

changing a probability distribution form. The way of changing these values defines a separate

algorithms of MVP scheme. The common approach for updating a probability vector can be

characterized by the rule: the better result received with a one-valued binary vector

component the bigger probability is assigned for it to get the value of one in the final solution.

This scheme can be augmented whether by some special methods for updating the

probability vector or through involving the peculiar procedures of generating random

solutions at a computational phase of an algorithm. This paper discusses the two methods for

updating the probability vector (ARSA and Modified ARSA ver. 1) and the two procedures of

generating random solutions (the independent generation of random points and the generation

of non-zero solutions) giving thus as a result four different realizations (algorithms) of MVP.

The Adaptive Random Search Algorithm (ARSA) plays a role of the background for

the rest of the algorithms of MVP scheme [10]. Initially, ARSA has been developed for the

problem of pattern recognition to select an informative subsystem of attributes. The main

disadvantage of this algorithm is a potential problem of updating values of probability vector

components. Namely, in some cases it is possible to get the values of intermediate solutions

which do not let the probability vector components to be changed. To correct the defect, the

modification of ARSA has been developed (Modified ARSA ver.1). The statistical data of

applying the modified version of ARSA display the better behavior of the algorithm when

solving problems of developing a structure of NVS.

Next, applying to the stated optimization problem, ARSA doesn’t provide a technique

of avoiding zero-solutions when solving the problem of designing NVS structure. To protect

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

2

an algorithm against spending both computational and time resources for calculating the

objective function values in the points of this kind, the particular technique of generating

random non-zero solutions has been developed. This technique is utilized in the MVP based

algorithm named NVS MVP (mentioning the strict field of using the algorithm).

Making use of both of the mentioned enhancements gave a great raise in the efficiency

of applying the MVP based algorithms to the problem of NVS structure development. The

statistical results presented in the final part of the paper show it. Different algorithms have

been tasted on the same optimization problem with the same quantity of objective function

calls.

The objective function of the presented optimization problem has several specific

features which can assist to reduce a search domain, thus allowing to decrease the searching

time. The objective function as a function of the whole system reliability represents the

product of reliabilities of separate software modules. Consequently, when a reliability of any

of the modules is equal to zero the overall system reliability turns into zero value also.

Physically, it represents a case when there are no versions chosen for (at least) some of the

software modules. The implication vector components corresponding to such the software

modules will be assigned zeroes as well. Obviously, it is necessary to avoid computing the

objective function in such the points.

The number of system structures having at least one software module without

versions-candidates assigned can be determined as the difference of the number of all the

possible structures and the quantity of the structures which provide every software module

with at least one candidate, i.e. 00  Rall NNN . The number of all possible structures is

determined through the dimensionality of an implication vector n as follows n

allN 2 . The

second intermediate value is found basing on the multiplication principle from combinatorics

as a number of all possible structures with software module combinations each without one of

them (that with no versions assigned). Formally, it is described in the following way:




 
I

i

R
ikN

1

0)12(, where I is the number of software modules, ik represents a number of

versions for the i-th software module.

Then, the final expression determining a sought value looks like this:





I

i

n ikN
1

0)12(2 .

The value of this expression depends on an overall number of candidates (a

dimensionality of the optimization problem), a number of software modules I and the

numbers of versions for each of the software module (ki, Ii ,1). In general case, this

expression takes grand values counting up to allN9.0 , i.e. 90% of all the possible solutions.

This means in this case that in order to find a solution it is sufficient to search through only

10% of the definitional domain of the objective function.

Unfortunately, there is the other side of the question making this result not so

optimistic. Namely, for the problems of large dimensionalities reducing the search domain to

10% means diminishing the dimensionality of a problem by very small value. For instance,

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

3

for a test problem of dimensionality n=117, avoiding all the null-valued points lowered the

problem dimensionality only down to 1160 Rn .

Nevertheless, exploiting this feature of the objective function has given satisfactory

results when applying the algorithms of the method of varied probabilities (MVP). The

modification of the MVP with the ability of avoiding null-valued points called NVS MVP has

its own way of generating random points at iterational steps of the algorithms. In NVS MPV,

random points are generated so that to provide each software module with at least one

version.

At every iterational step, the whole implication vector generated is concerned as

consisting of parts each describing the structure of a separate software module. Thus indeed,

random vector generating consists of generating of random structures of modules. This

approach allows having only non-zero solutions in result.

3. The Random Search of Boundary Points

Another stochastic algorithm to optimize the structure of NVS is the algorithm of

random search of boundary points [8]. It is based on the proved fact that a solution of the

stated optimization problem is a so called boundary point. Or in terms of binary space

topology, a point neighboring to the set of infeasible solutions. Such a point describes a

system structure which can not be updated through including a software versions additionally

without violating the resource conditions, i.e. no version can not be added to a system

structure of this kind paying attention to restrictions. The algorithm of random search of

boundary points constitutes a generating of multiple boundary solutions and comparing the

objective functions values in them.

The constraint in this optimization problem partitions the whole binary space into two

domains – the domain of solution satisfying the constraint function and a set of points not

satisfying to the constraint. It is shown that these domains represent the connected sets and

that a solution of correspondent optimization problem is a point neighboring to the set of

infeasible solutions. This kind of solution can be called a boundary point.

Basing on the results stated above, it is clear that it is sufficient to search among only

boundary points in order to find the best value of the objective function. Thus, the problem of

finding a best solution becomes a problem of an exhaustive search on the boundary points set.

The following is the algorithm of generating boundary point for the problem of

developing the optimal structure of NVS (Fig. 1).

Different boundary points can be reached using this algorithm when different

combinations of ways to choose i at the second step of the algorithm will be followed.

Hence, the algorithm of searching boundary points will have the following scheme.

1. The initializing step: i=0.

2. Determine a boundary point Xbi (b – as an index means “boundary”).

3. Calculate the objective function value Fi=F(Xbi).

4. If the stopping condition is satisfied go to p. 5, otherwise i=i+1 and go to p. 2.

5. The solution is i
i
FF max*  .

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

4

C(X)+C
i
>B

nixi ,1},0{0 X

})(:{),/(221

* BCBDDBO nn  XXX

yes

no

0thatsuch

1Choose





ix

Ii

x
i
=1

Figure 1. Generating a boundary point.

Separate variations of the algorithm of boundary points search may differ from each

other in a stopping condition and in ways of reaching boundary when generating boundary

points. For the optimization problems of high complexity it is more rational to use stochastic

version of the algorithm when boundary points are reached in a random way and this process

is executed repeatedly.

4. The Comparison of the Random Optimization Procedures

Concluding the paper, let us cite the comparative data of the computational results for

different random optimization procedures. To gather such the information, the presented

algorithms have been used to solve the test NVS structure optimization problems [9-12]. The

efficiency of the random search algorithms has been judged by the values of the objective and

constraining functions.

The problem of dimensionality 117 has been chosen as the test problem, i.e. the

developed software system included 117 software versions. It's worth mentioning that every

of the random search algorithms needed approximately same period of time for calculating

under equal conditions. That's why the time has not been set as an efficiency characteristic.

Table 1 contains the computational results of algorithms testing [13,14]. The best

searching capabilities have been revealed with the use of NVS MVP algorithm and the

algorithm of boundary points search. The latter displayed the highest stability of the solutions

found, although using NVS MVP it is sometimes possible to find more reliable system

configurations.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

5

Table 1. The results of random search algorithms working.

№

B
u
d
g
et

 c
o
n
st

ra
in

t

В

N
u
m

b
er

 o
f

it
er

ai
o
n
s

The random search algorithms

NVS MVP
Random search of

boundary points

R(X
*
) C(X

*
) R(X

*
) C(X

*
)

1.
8

00

15000

0.7872

0.7916

0.7907

789

791

791

0.8074

0.7998

0.8177

796

797

794

30000

0.8136

0.8054

0.8118

786

775

784

0.8318

0.8331

0.8377

794

797

798

2.
9

00

15000

0.9040

0.9207

0.9039

850

896

887

0.9149

0.9164

0.9148

899

899

898

30000

0.9076

0.9082

0.9155

867

875

890

0.9192

0.9167

0.9177

897

897

892

3.
1

000

15000

0.9701

0.9523

0.9546

995

986

989

0.9622

0.9609

0.9635

993

998

998

30000

0.9651

0.9554

0.9712

994

988

997

0.9652

0.9661

0.9631

997

995

996

5. Conclusion

The problem of structuring an N-version software system is specified by the binary

character, what made it plausible to apply the methods of pseudo-Boolean optimization.

Within the limits of the discrete optimization a set of methods and algorithms has been

proposed. The search capabilities of each of the algorithms realized have been investigated by

solving the test problems. It was shown that the modification of the method of varying

probabilities for NVS MVP together with the algorithm of boundary points search provide the

best searching capabilities concerning the time efficiency and the solution quality.

References

[1] Laprie J-C et al 1987 Hardware- and Software-fault tolerance: definition and

analysis of architectural solutions Proceedings of the IEEE pp. 116-121.

[2] Scheer S, Maier T 1997 Towards Dependable Software Requirement

Specifications In: Daniel, P. (ed.) Proceedings of SAFECOMP, New York (1997)

[3] Kovalev I 1994 Optimization-based design of software of the spacecraft

control systems In: "Modelling, Measurement and Control, B" vol. 56 №1 pp. 29-34.

[4] Kovalev I V, Engel E A, Tsarev R Ju 2007 Programmatic support of the

analysis of cluster structures of failure-resistant information systems Automatic

Documentation and Mathematical Linguistics vol.413 pp. 89.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

6

[5] Avizienis A 1995 The methdology of N-version programming In: Software

fault tolerance (edited by M.R. Lyu, Wiley) pp. 23-47.

[6] Antamoshkin A, Schwefel H P, Torn A, Yin G and Zilinskas A 1993 System

Analysis, Design and Optimization. Ofset Press, Krasnoyarsk 312 p.

[7] Antamoshkin A N et al 2013 Random Search Algorithm for the p-Median

Problem Informatica 3(37) pp. 127–140.

[8] Kazakovtsev L, Stanimirovic P, Osinga I, Gudima M and Antamoshkin A

2014 Algorithms for location problems based on angular distances Advances in Operations

Research vol. 2014. Articale ID 701267. 12 pages.

 - http://www.hindawi.com/journals/aor/raa/701267/

[9] Kovalev I. 1998 Optimization problems when realizing the spacecrafts control

In: Advances in Modeling and Analysis, C vol. 52 1-2 pp. 62-70.

[10] Kovalev I V, Dgioeva N N, Slobodin M Ju 2004 The mathematical system

model for the problem of multi-version software design. Proceedings of Modelling and

Simulation, MS'2004 AMSE International Conference on Modelling and Simulation

(MS'2004. AMSE, French Research Council, CNRS, Rhone-Alpes Region, Hospitals of

Lyon. Lyon-Villeurbanne).

[11] Kovalev I, Grosspietsch K-E 2000 Deriving the Optimal Structure of N-

version Software under Resource Requirements and Cost Timing Constraints (Proc.

Euromicro' 2000, Maastricht, 2000, IEEE CS Press) pp. 200-207.

[12] Kovalev I et al 2013 The Minimization of Inter-Module Interface for the

Achievement of Reliability of Multi-Version Software Proceedings of the 2013 International

Conference on Systems, Control and Informatics (SCI 2013) (Venice, Italy, September 28-30

2013) pp. 186-188.

[13] Kovalev I 1995 Optimal base software composition of the spacecrafts control

system In: "Advances in Modeling and Analysis, C" (AMSE Periodicals) vol. 47 3 pp. 17-26.

[14] Kovalev I V et al 2002 Fault-tolerant software architecture creation model

based on reliability evaluation Advanced in Modeling & Analysis (Journal of AMSE

Periodicals) vol. 48 3-4 pp. 31-43.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012013 doi:10.1088/1757-899X/94/1/012013

7

