
THE MATHEMATICAL STATEMENT FOR THE SOLVING

OF THE PROBLEM OF N-VERSION SOFTWARE

SYSTEM DESIGN
*

I V Kovalev, D I Kovalev, P V Zelenkov, A A Voroshilova

Siberian State Aerospace University Named after Academician M.F. Reshetnev

31 “KrasnoyarskiyRabochiy” prospect, Krasnoyarsk, 660037, Russia.

Е-mail:zelenkov@sibsau.ru

Abstract.The N-version programming, as a methodology of the fault-tolerant

software systems design, allows successful solving of the mentioned tasks. The

use of N-version programming approach turns out to be effective, since the

system is constructed out of several parallel executed versions of some

software module. Those versions are written to meet the same specification but

by different programmers. The problem of developing an optimal structure of

N-version software system presents a kind of very complex optimization

problem. This causes the use of deterministic optimization methods

inappropriate for solving the stated problem. In this view, exploiting heuristic

strategies looks more rational. In the field of pseudo-Boolean optimization

theory, the so called method of varied probabilities (MVP) has been developed

to solve problems with a large dimensionality.

1. Introduction

Development of high-reliable fault-tolerant systems is an interesting engineering

problem having not only technical meaning but also social importance. Systems of this kind

determine the stability in social and technical environments, and multiple examples of such

systems’ crashes prove the strong need for more reliable constructions which can be realized

through the use of up-to-date methods and approaches.

The rapid progress of computer technique of late years has made the software an

essential part of any complex automated system. The reliability of software component may

determine the reliability of whole the hardware-software system. That’s why during last years

large attention is paid to the development of the methodologies of designing high-reliable

software complexes [1-5].

Practically, multi-channel tools increasing the system reliability at the expense of a

multiple duplication of certain structure elements are very much in evidence. This approach

has given a good account of itself in the designing of hardware parts of complex systems. The

use of this methodology leads to a sizable decreasing of appearance probability of random

errors having the physical nature. In turn, this approach is not an influence on software

reliability, since it doesn’t trace so called dormant (or sleeping) errors which could arise while

writing the program code by a stated specification [6].

*
 The research was done with the financial support of the Ministry of Education and Science of the Russian

Federation in accordance with the agreement № 14.574.21.0041, unique identifier RFMEFI57414X0041

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

The multi-version programming, as a methodology of the fault-tolerant software

systems design, allows successful solving of the mentioned tasks. The idea of multi-version

programming has been introduced by A. Avizienis in 1977 [7]. The term N-version

programming (NVP) used in the literature is of equal meaning and often takes place in papers

on the observed methodology. A. Avizienis introduced NVP as an independent generation of

N2 functionally equivalent software modules from the same initial specification. The

concurrent execution tools are provided for such the modules. In cross-check points (cc-

points) software modules generate cross-check vectors (cc-vectors). The components of the

cc-vectors and the cc-points are to be determined in the specification set.

The use of N-version programming approach turns out to be effective, since the

system is constructed out of several parallel executed versions of some software module.

Those versions are written to meet the same specification but by different programmers.

Where, the writing process of each version of concrete software module in any way must not

intersect with or depend on another version code writing. This is done to avoid the presence of

same dormant (or sleeping) errors in separate software designs. This kind of errors is typical

for software components.

The problem of developing the optimal structure of an N-version software system

(NVS) is the following: to choose a set of software modules, so as to provide the highest

reliability for the system subject to the budget constraint. Since a description of any possible

system configuration is made through such the positioning of its components, we can say that

an observed problem has the binary essence [8]. Moreover, the existing theory of pseudo-

Boolean functions and their optimization contains strong tools for solving problems of this

kind [9]. And that fact makes the use of binarization algorithms more affordable.

The process of a problem binarization consists in setting relationships between the

system states and the binary space elements. In the case of our system model, we need to

determine some Boolean vector the elements of which will characterize the system structure.

Each element of such the Boolean vector will signify either presence or absence of

corresponding system component [10].

In that way, before starting to describe the exact process of binarization, all the

necessary terms should be coined and the presented system model should be overviewed in

details.

2. Optimization Model for Structuring NVS

The structure of N-version software system is determined consisting of a set of tasks (a

set III card,). All the tasks are divided into classes, i.e. a set of task classes is introduced

as well (JJJ card,).

To solve the tasks belonging to a certain class, there is a software module, which can

be realized by any of its versions. Thus, JKK card, – the set of software modules. Let us

introduce the vector),1(}{ JjS j S , each component of which is equal to a number of

module versions (jS – the number of versions of module solving a task of class j) [11].

To describe the task belonging to particular classes, in [12] the authors define sets of

tasks for every task class. That is introduced as two-dimensional array in programming terms.

Since the numbers of tasks belonging to different classes are not equal, that may cause some

difficulties when translating the analytic expressions into a program code.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

2

Here, it is proposed to use only one set the capacity of which is equal to the number of

tasks in a system. And each element of this set is equal to the number of class a task belongs

to. So, the set IBB card, is the set of class membership of tasks, i.e. the element iB of the

set B presents the number of class the i-th task belongs to.

Using the introduced notations, lets us determine a common analytic form of the

number of versions solving i-th task. If the element iB of the set B is the number of class the

i-th task belongs to, then an element of the set S, the index number of which is equal to iB ,

determines the number of versions in a module solving i-th task. Therefore, this number can

be written like this
i

BS .

Basing on that, we will introduce the Boolean variables i

sX to describe the control

implication of different module versions:























.task),1(ththesolve toused

ismoduleofversion),1(ththe
,0

,task),1(ththesolveto

usedismoduleofversion),1(ththe
,1

I

BS

I

BS

X
i

i
B

i
i

B

i

s

ii

ss

ii

ss

not
(1)

Expanding the introduced variables into the implication vector is the head moment in

applying pseudo-Boolean optimization methods to the considered systems design.

Since a vector component number is specified by only one index and we deal with

two-index variables, it is necessary to establish an algorithm forming an implication vector

and an algorithm determining the component indices of this vector. Following section

contains the algorithms to convert a problem of optimal structure design for N-version

systems to a problem of pseudo-Boolean optimization and vice versa.

2.1. Conversion Algorithms

The algorithm of an implication vector forming acts in the following way (see the

scheme on fig. 2). The first component of an implication vector X describes the first version

of a module to be involved in the solving of the first system task. If the software module

which solves the first task has more than one version, the next component of vector X

characterizes the second version of the first task module. In this way, all the versions of all

software modules are overhauled.

Versions
Tasks

Figure 1. An example of the implication vector.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

3

Hence, in order to determine the number of a vector X component, being aware of

corresponding number of a task i and a number of version s, it is necessary to sum the number

of versions in the modules solving the first (i-1) tasks and to add s to obtained value.

Analytically this conversion appears as follows:
























.1,

,1,

1

1

iifsS

iifs

pos
i

j
j

B

(2)

In order not to recalculate the first sum (the number of versions in the first (i-1) tasks)

every time when optimizing a system, it would be better to count those sums depending on

different i and to memorize them in an index vector:





i

j
j

Bi SG
1

, or in recurrent form












 .1,

,1,

1

1

iifSG

iifS
G

i
Bi

B

i (3)

Therefore, the value of the i-th component of vector G equals the number of versions

in modules solving the tasks from the first up to the i-th. It results from this that the value of

the last vector G component is equal to n – the implication vector dimensionality, i.e.

nS
N

i
i

B 
1

.

Once the index vector is introduced, the analytic record of a calculation of the

implication vector component number takes the form of the following:










 .1,

,1,

1 iifsG

iifs
pos

i

(4)

The reverse conversion task (a conversion of the implication vector component

number to the numbers of task and version) consists of the consecutive determining of i and s.

The flowchart of this algorithm is show on the figure 2.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

4

Initial data

I, J, B, K, S

i=1

Pos

Yes

i=i+1

No

i, s

1 iGposs

Determining a number

of task, which the vector

element belongs to

Determining a

version number

I - a tasks set

J - a task classes set

B - a set of tasks' class

membership

K - a software modules set

S - a versions set

G - an index vector

i
Bii

i

j
j

Bi

i

SGGor

SG

NiG













1

1

,1},{G

iGpos 

Figure 2. A conversion of the implication vector component number

into the numbers of task and version.

Since the i-th element of the index vector equals the number of versions in modules

solving the tasks from the first up to the i-th, the task number is determined by comparing the

index of the implication vector component with the elements of the index vector. The

comparison is being made from the first element of the index vector till the last one

sequentially. And when the value of the parameter pos turns out to be less than or equal to the

value of the index vector component, the required task number takes the value of this element

number.

Then subtracting the number of versions in all the tasks from the first up to the (i-1)-th

(equal to 1iG) from pos we get a version number of software module solving the i-th task

corresponding to pos.

The two presented algorithms [12] are the core of applying binary approach to solve

the stated problem. Thus, having received the tools for a problem conversion, it became

possible to use the methods developed within the confines of pseudo-Boolean optimization

study. Some the features of the considered problem are discussed in the following section.

Basing on this the conclusions about the relevant methods is made.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

5

2.2. The mathematical Statement of the Problem

The converting algorithms considered above allow to describe the NVS structure in a

form of a Boolean vector. As it was noticed previously, the optimal design of control system

is held subject to different parameters: the reliability (it should be as big as possible), the cost

(it should be as small as possible or at least it shouldn't exceed some limit), the allocation &

scheduling and so on [14].

In terms of optimization theory, a system reliability function of a system structure is

nothing else but an objective function. And conditions imposed on the system structure are

the constraints set to limit the objective function domain [13]. Since we are able to associate a

system structure with a Boolean vector, an objective function is a pseudo-Boolean one. And

an optimization problem becomes a pseudo-Boolean one too.

In the framework of the presented model we will use a system reliability function as

the objective function and the system cost will be the constraint imposed on the system [15-

19]. In analytic form this problem can be written as follows:

 



I

i

iRR
1

max ,

where 



iBS

s

i
s

X

s
i

Bi RR
1

)1(1

subject to

 BCX
I

i

i
B

S

s

i

s siB 
 1 1

.

Here, s
i

BR and s
i

BC are the reliability and the cost of the software version s from

module which solves the task of class Bi

3. Conclusion

The problem of structuring an N-version software system is specified by the binary

character, what made it plausible to apply the methods of pseudo-Boolean optimization.

Within the limits of the discrete optimization a set of methods and algorithms has been

proposed. Thus, having received the tools for a problem conversion, it became possible to use

the methods developed within the confines of pseudo-Boolean optimization study.

References

[1] Laprie J-C et al 1987 Hardware- and Software-fault tolerance: definition and

analysis of architectural solutions Proceedings of the IEEEp pp. 116-121.

[2] Anderson T, Barrett P A, Halliwell D N, Moudling M L 1985 An evaluation of

software fault tolerance in a practical system Proc. Fault Tolerant Computing Symposium

pp. 140-145.

[3] Scheer S, Maier T 1997 Towards dependable software requirement

specifications In: Daniel, P. (ed.) Proceedings of SAFECOMP (New York)

[4] Kovalev I 1994 Optimization-based design of software of the spacecraft

control systems In: "Modelling, Measurement and Control (AMSE Press), B vol.56 1 pp. 29-

34.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

6

[5] Kovalev I V, Engel E A, Tsarev R Ju 2007 Programmatic support of the

analysis of cluster structures of failure-resistant information systems Automatic

Documentation and Mathematical Linguistics vol.41 3 pp. 89.

[6] Keene S J 1994 Comparing hardware and software reliability Reliability

Review 14(4) pp. 5-21.

[7] Avizienis A 1995 The methdology of N-version programming In: Software

fault tolerance (edited by M.R. Lyu, Wiley) pp. 23-47.

[8] Antamoshkin A, Schwefel H P, Torn A, Yin G and Zilinskas A 1993 System

analysis, design and optimization. Ofset Press (Krasnoyarsk) 312 p.

[9] Antamoshkin A N et al 2013 Random search algorithm for the p-median

problem Informatica 3(37) pp. 127–140.

[10] Kazakovtsev L, Stanimirovic P, Osinga I, Gudima M and Antamoshkin A

2014 Algorithms for location problems based on angular distances. Advances in Operations

Research. Articale ID 701267. 12 pages. - http://www.hindawi.com/journals/aor/raa/701267/

[11] Kovalev I 1998 Optimization problems when realizing the spacecrafts control

In: Advances in Modeling and Analysis vol. 52 1-2 pp. 62-70.

[12] Kovalev I V, Dgioeva N N, Slobodin M Ju 2004 The mathematical system

model for the problem of multi-version software design Proceedings of Modelling and

Simulation, MS'2004 AMSE International Conference on Modelling and Simulation,

(MS'2004. AMSE, French Research Council, CNRS, Rhone-Alpes Region, Hospitals of

Lyon. Lyon-Villeurbanne).

[13] Kovalev I, Grosspietsch K-E 2000 Deriving the optimal structure of N-version

software under resource requirements and cost Timing Constraints (Proc. Euromicro' 2000,

Maastricht, 2000, IEEE CS Press) pp. 200-207.

[14] Kovalev I et al 2013 The minimization of inter-module interface for the

achievement of reliability of multi-version software Proceedings of the 2013 International

Conference on Systems, Control and Informatics (SCI 2013), Venice, Italy, September 28-30

pp. 186-188.

[15] Ashrafi N et al 1994 Optimal design of large software-systems using N-

version programming IEEE Trans. on Reliability vol.43 2 pp. 344-350.

[16] Ashrafi N, Berman O 1992 Optimization models for selection of programs,

considering cost and reliability IEEE Trans. on Reliability vol.41 2 pp. 281-287.

[17] Ashrafi N, Berman O 1993 Optimization models for reliability of modular

software systems IEEE Trans. on Software Engineering vol.19 11 pp. 1119-1123.

[18] Kovalev I 1995 Optimal base software composition of the spacecrafts control

system In: "Advances in Modelling and Analysis, C" (AMSE Periodicals) vol.47 3 pp. 17-26.

[19] Kovalev I V et al 2002 Fault-tolerant software architecture creation model

based on reliability evaluation Advanced in Modeling & Analysis (Journal of AMSE

Periodicals) vol.48 3-4 pp. 31-43.

TIAA2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 94 (2015) 012012 doi:10.1088/1757-899X/94/1/012012

7

