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Abstract.
Looking at severe plastic deformation experiments, it seems that crystalline materials at

yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable
crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static
process, where inertial and other body forces can be neglected. The flow through the lattice
space is restricted to preferred crystallographic planes and directions causing anisotropy. In the
deformation process the lattice is strained and rotated. The proposed model is based on the rate
form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and
the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The
proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted
boundary value problem. As a test example we analyze a plastic flow of an single crystal
compressed in a channel die. We propose three step algorithm of finite element discretization
for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

1. Introduction
Considering severe plastic deformation experiments as a motivation [1, 2, 3, 4, 5], plastic
behaviour of crystalline solids is treated as a material flow through an adjustable crystal lattice
space 1. This point of view has been regarded by Asaro [6] as crystal plasticity ”basic tenet”. It
seems that crystalline materials at yield behave as a special kind of incompressible, anisotropic,
highly viscous fluids 2. High viscosity provides a possibility to describe the flow as a quasi-static
process, where inertial and other body forces can be neglected. The flow through the lattice
space is restricted to preferred crystallographic planes and directions causing anisotropy. In the
deformation process the lattice space is adjusted to the material flow by a lattice distortion, i.e.
by rotation and stretching. The lattice space is treated as a solid, its distortion is measured
with respect to a lattice reference configuration.

1 The term ”space” is used deliberately, as the crystal lattice is understood as a space of preferred positions in a
crystalline phase considered regardless of particles staying or flowing through them.
2 We mean a fluid in a generalized sense proposed e.g. by Rajagopal et al. [7].
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Let us note that traditional solution of finite crystal plasticity is based on Lagrangian
convected coordinate representation, see e.g. [8]. The Eulerian approach has been employed
for a rigid-plastic model in a recent paper [9] with emphasis on dynamical problems. While
the Eulerian formulation is very well suited for flow-like problems, as for example an equal
channel angular extrusion experiment [10], in the case of a simple compression we deal with a
free boundary problem. For this reason we employ the Arbitrary Lagrangian Eulerian (ALE)
approach in the sense that we use the Eulerian formulation on a moving mesh which captures
the free boundary.

The organization of the paper is as follows. In Section 2, we introduce the kinematics and
formulate the flow model. The model of the plane strain compression and the finite element
formulation are presented in Section 3. The simulation results are given and compared with the
compression tests and computation of Harren et al. [11] in Section 4. Moreover, in Appendix
we provide detailed derivation of the evolution equation for the Cauchy stress.

2. Flow model
Kinematics of the model is characterized by the velocity field v(x, t) and the lattice deformation
gradient Fe(x, t); x is a position at the current configuration, t means time, v describes the
material flow in the current configuration, and Fe controls the adjustment of the lattice space
in the current configuration with respect to the lattice reference configuration.

The velocity gradient decomposes as follows L = ∇v = D+W , where D = (∇v+(∇v)T )/2
is the stretching and W = (∇v − (∇v)T )/2 is the spin; ∇ denotes the spatial gradient with
respect to the coordinates x in the current configuration. The velocity gradient L consists of
the lattice rate Le = Ḟe(Fe)−1 and the plastic rate Lp (a superposed dot means time derivative
with respect to lattice space)

L = ∇v = Le + Lp and D = De + Dp, (1)

where De and Dp are the symmetric parts of Le and Lp, respectively.
The lattice deformation gradient Fe involves small elastic stretches and rigid body rotations

of the lattice space as expressed in the polar decomposition

Fe = ReUe (2)

where Re is the lattice rotation field. The right stretch tensor Ue is related to the Green tensor
Ee = [(Ue)2 − I]/2 = [(Fe)TFe − I]/2, where I stands for the identity matrix.

The rate of Ee can be expressed as

Ėe =
1

2

(
Fe

T Ḟe + Ḟe
T
Fe

)
=

1

2
Fe

T
(
ḞeFe

−1 + Fe
−T Ḟe

T
)
Fe = Fe

TDeFe. (3)

The material flow takes place on prescribed slip systems (i), i = 1, 2, . . . , N ; N is the number
of slip systems. In the current configuration (i) slip system is defined by the unit vector s(i) in
the direction of slip and by the unit normal to the glide plane m(i). The lattice vectors s(i) and
m(i) are transformed from the lattice reference configuration into the current configuration,

s(i) = Fes
(i)
0 , m(i) = (Fe)−Tm

(i)
0 , (4)

where s
(i)
0 ,m

(i)
0 are the unit vectors fixed in the lattice reference configuration. They are

determined by the crystallographic structure of the material.
The flow is governed by slip rates ν(i)(x, t) on the individual slip systems via the flow rule

Lp =

N∑
i=1

ν(i)s(i) ⊗m(i) . (5)
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By taking the time derivative of the relations (4) and substituting Ḟe from (1), we obtain
the equation that describes the evolution of the slip and normal directions

˙s(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)
s(i), ṁ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)−T

m(i). (6)

The deformation process is governed by the Cauchy stress T (x, t). The fields v and T have
to satisfy the stress equilibrium

%v̇ − divT = 0, T = T T , (7)

where % stands for the density subjected to the mass balance

%̇+ %div v = 0. (8)

The evolution of the Cauchy stress is given by

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp). (9)

For detailed derivation of (9) and definition of the fourth order elastic tensor C, we refer to
Appendix.

The second law of thermodynamics expressed in a form convenient for the present
consideration reads

T : D − %Ψ̇ ≥ 0 , (10)

Ψ represents a Helmholtz potential.
The Cauchy stress T controls the slip rates ν(i) through the resolved shear stresses τ (i)

τ (i) = s(i) · Tm(i). (11)

Considering rate dependent (visco-plastic) version of the flow model the resolved shear stresses
τ (i) are assumed to be coupled with the slip rates ν(i) through a power law constitutive equation
(viscous-plastic yield condition assumed by Kuroda [12])

ν(i) = ν0 sgn(τ (i))

(
|τ (i)|
g(i)

)1/m

, (12)

where ν0 is the characteristic slip rate, g(i) > 0 is the slip resistance, and m > 0 is a material
parameter which controls the rate sensitivity.

The slip resistances g(i), i = 1, 2, . . . , N , are governed by the evolution equations,

ġ(i) =

N∑
j=1

Hij |ν(j)| , g(i)|t=0 = g0 , (13)

where the hardening matrix components Hij = H0 sech2(H0νacc/(gs − g0)), with the initial
hardening rate H0 = 8.9g0, the saturation strength gs = 1.8g0 and the accumulated slip
νacc(t) =

∑
i

∫ t
0 |ν

(i)|dt, see [6].
We conclude this section with formulation of an initial boundary value problem for the

unknown density %, the velocity v, the Cauchy stress tensor T , the slip directions s(i), and
the normal to slip planes m(i), which is given by the system of equations
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%̇+ %div v = 0,

%v̇ − divT = 0,

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp),

ṡ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)
s(i), ṁ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)−T

m(i),

(14)

where ν(i) is given by (12), Dp =
∑N

i=1 ν
(i)sym(s(i) ⊗m(i)) and ġ(i) is defined by (13). The

system (14) holds for all x ∈ Ω and all t ∈ [0,∞) and is endowed with the initial and boundary
conditions

%(x, 0) = %0(x) for x ∈ Ω,

s(i)(x, 0) = (cos(φi0(x)), sin(φi0(x))), for x ∈ Ω,

m(i)(x, 0) = (− sin(φi0(x)), cos(φi0(x))), for x ∈ Ω,

T (x, 0) = 0 for x ∈ Ω,

v(x, t) = v0(x, t) for x ∈ ΓD × [0,∞),

T (x, t)n = 0 for x ∈ ΓN × [0,∞),

(15)

where ∂Ω = ΓD ∪ ΓN and %0, v0, φi0 are given functions.

3. Plane strain compression of single crystal
The model considered in this section is inspired by the detailed study of structure and micro-
mechanisms of strain localization process during plane strain compression of f.c.c. single crystals
in a channel die [11]. X-ray measurements were carried out to determine the lattice reorientation
of the single crystals of various initial crystallographic orientations prior macroscopic shear bands
appeared, i.e. up to the engineering compression strain 0.3-0.9. It was observed that except
crystal symmetrically oriented with respect the compression and extension axes, the crystals
had an overall common behaviour. After yield all these crystals start to reorient in such a way
that their crystallographic direction [110] approaches the compression axis and the direction
[001] becomes parallel to the extension axis along the channel, i.e. these reorientations tend
to bring the crystals toward the (110)[001] orientation. The (110)[001] geometry coincide with
a stable state of symmetric slip on four slip systems: (111)[101̄], (111)[011̄] and (111̄)[101],
(111̄)[011]. The net shearing systems associated with this symmetric state are then [112̄] in
(111) and [112] in (111̄), and hence, the resulting deformation of this symmetric state is aligned
with the channel. So, for these crystals, as deformation proceeds, such state of plane strain
crystallographic deformation is approached.

In order to simulate the compression tests of single crystals Harren et al. [11] employed
the two-dimensional model single crystal with the two considered slip systems (111)[112̄]
and (111̄)[112].The orientation of the slip systems with respect to compression axis is ϕ =
arccos{([110]/

√
2) · ([112]/

√
6)} ≈ 55◦. The experimental observations of shear bands formation

and the computed deformation response based on the traditional crystal plasticity Lagrangian
approach are in close agreement.

3.1. Channel-die compression
To test the present approach we consider the two-dimensional single crystal plane strain
compression simulated in Harren et al. [11]. The model is represented by a rectangular-shaped
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single crystal with two or three active slip systems, that is subjected to channel-die compression
as shown in Figures 1 and 2.

The initial boundary conditions are taken as in (15), with ΓD = Γ1 ∪ Γ3 and ΓN = Γ2 ∪ Γ4.
Namely, for the velocity (v = (v1, v2)) and the Cauchy stress are assumed to be

v2 = V on Γ1, v2 = 0 on Γ3, Tn = 0 on Γ2 ∪ Γ4.

Characteristic values are set to satisfy following ratios

E

g0
= 1000,

ν0L

V
= 1, (16)

where E stands for Young’s modulus and V , L, ν0 are the reference velocity, length and slip
rate, respectively. Note, that g0 was defined in (13).

3.2. Finite element formulation
In the employed Arbitrary Lagrangian Eulerian (ALE) approach the time is discretized by a one
step finite difference and a mixed finite element discretization is used in space. The choice of
the approximations of each variable consists of P2 elements for the velocity (v = (vx, vy)), P1

for the density and the lattice rotations (all continuous) and P1-discontinuous for the Cauchy
stress and the slip rates. This leads to the following definitions of the finite-dimensional spaces

Vh = {vh ∈W 1,2(Ω;R2); vy|Γ1 = −1, vy|Γ3 = 0, v|K ∈ P2(K)2 ∀K ∈ Th},
Rh = {%h ∈W 1,2(Ω;R); %h|Γ1 = 1, %h|K ∈ P1(K) ∀K ∈ Th},
Th = {T h ∈ L2(Ω;R2×2

sym); T h|K ∈ P1(K)2×2 ∀K ∈ Th},
Nh = {νh ∈ L2(R); νh|K ∈ P1(K) ∀K ∈ Th},
Ah = {αh ∈W 1,2(Ω;R); αh|Γ1 = 0, αh|K ∈ P1(K) ∀K ∈ Th}.

Here, Th is the triangulation of our domain with h representing the discretization parametr, for
example the characteristic size of the triangles. The time interval (0, T ) is divided into steps of
length ∆t and by superscript k we denote the variables at the time level tk.

For the solution algorithm of the system (14) at each timestep the set of the equations is
decomposed into two parts which are solved subsequently in three sub-steps. Given vk−1, %k−1,
T k−1, s(i)k−1, m(i)k−1, ν(i)k−1 and g(i)k−1 from previous time level we proceed as follows:

������������������������������������������������������������������������������

������������������������������������������������������������������������������

? ? ? ? ? ? ? ? ? ? ?
Γ1

Γ3

Γ4 Γ2

Figure 1. Channel-die compression scheme

s(1)m(1)

m(2)

s(2)

α2

α1

Figure 2. Scheme of slip systems
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Step 1: Solve problem for vk, %k,T k, and ν(i)k

%k − %k−1

∆t
+ div (%kvk) = 0,

%k
(
vk − vk−1

∆t
+
(
vk − vk−1

mesh

)
∇vk

)
− divT k = 0,

T k − T k−1

∆t
+
(
vk − vk−1

mesh

)
∇T k + T kdiv vk

−Le
k,k−1T k − T k(Le

k,k−1)T − %kC(Dk −Dp
k,k−1) = 0,

ν(i)k − sgn (T k : s(i)k−1 ⊗m(i)k−1)

(
|T k : s(i)k−1 ⊗m(i)k−1|

g(i)k−1

)1/m

= 0 ∀i ∈ {1, 2, 3},

(17)

where if we use Lp
(i)k−1 = s(i)k−1⊗m(i)k−1, we define Le

k,k−1 = ∇vk−
∑N

i=1 ν
(i)kLp

(i)k−1

and Dp
k,k−1 =

∑N
i=1 ν

(i)ksym
(
Lp

(i)k−1
)

.

Step 2: Move the mesh by uk = vk
mesh∆t. The velocity of the mesh motion vk

mesh can be
taken as the material velocity vk which in fact leads to a Lagrangian description or it
can be choosen arbitrary with restriction that vk

mesh|∂Ω = vk|∂Ω which leads to the ALE
description.

Step 3: Compute the new critical stress, the slip directions, and the new normal to the slip
planes

s(i)k − s(i)k−1

∆t
+
(
vk − vk

mesh

)
∇s(i)k = Le

ks(i)k,

m(i)k −m(i)k−1

∆t
+
(
vk − vk

mesh

)
∇m(i)k = (Le

k)−Tm(i)k,

g(i)k − g(i)k−1

∆t
+
(
vk − vk

mesh

)
∇g(i)k =

N∑
j=1

hij |ν(j)|

(18)

where Le
k = ∇vk−

∑N
i=1 sgn (T k : s(i)k⊗m(i)k)

(
|T k : s(i)k ⊗m(i)k|/g(i)k

)1/m
s(i)k⊗m(i)k.

The systems (17) and (18) are formulated in standard weak sense, discretized by means of
the mixed FE spaces mentioned above. To solve the systems we employ a non-linear Newton-
Raphson solver with an analytic evaluation of the Jacobian and use sparse direct solver MUMPS
for solving the linear systems. Implementation is done in the software package FEniCS [13].

4. Results
The set of value of parameters of our simulations, which satisfies (16), were chosen following
numerical studies in [11], namely: the density %0 = 3000 kg/m3, the velocity V = 10−5 m/s, the
length L = 10−2 m, the reference slip rate ν0 = 10−3 1/s, the reference stress g0 = 123 MPa,
the Poisson’s ratio νpois = 0.3, and the rate sensitivity parameter is between m ∈ [0.005, 0.05]
that is 1/m ∈ [20, 200]. The rotation of the slip systems are described by the angles of lattice
rotation αi, with initial values (α1

0, α
2
0) = (α0 + ϕ, α0 − ϕ, ), where ϕ = 54.74◦, see Figure 2.

Moreover, we specify the right hand side of (9), i.e. fourth order isotropic elasticity tensor C
as C(D−D∗) = λ(tr (D−Dp))I + 2µ(D−Dp), where λ = 576.92g0 and µ = 384.62g0 are the
Lame coefficients.

After rescaling the system (14) we notice that in the present case the characteristic number,
which multiplies the dynamic term in the momentum equilibrium %v̇, R1 = %0V

2/τ0 ≈ 3× 10−5.
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Thus, quasi-static assumption would be justified. Nevertheless, we keep this therm for
computational purposes.

Simulations were conducted on a structured triangular mesh consists of 37688 vortices (74800
cells).

4.1. Non-symmetric double slip
The method presented in Section 3.2 was employed first to solve initial boundary value problem
(14) with the non-symmetric double slip. We address the problem of the compression of the
single crystal with the non-zero initial angle α0 6= 0 of the lattice rotation with respect to
the compression axis. In Figure 3 we present result of simulations with the different initial
orientations for the initially square and rectangular shaped domains. The initial orientations
were set at 0.2 rad = 11.46◦ and 0.4 rad = 22.9◦.

The simulations indicate that the angle of lattice rotation has a tendency to decrease; during
die-compression the orientation of the slip systems approaches the symmetric orientation. Such
reorientation effect was observed in most the single crystals measured by X-ray in [11].

Figure 4 shows the behavior of individual slip systems. Notice the difference between the
alignment of the slip activity regions (shear bands) between the square and rectangle shaped
domains. It is also worth of noticing that if we add third slip system perpendicular to the
compression axis (α3

0 = α0 + π/2), the third slip system is almost inactive. For similar studies
we refer to [9].

In the investigation of the influence of the initial angle of the lattice rotation we took the rate
sensitivity parameter 1/m = 20, i.e. the value significantly smaller then 1/m = 200 employed
in the symmetric case. The reason was that for high 1/m the suggested method is not yet able
to capture the case presented in Section 4.2 for initial angle different then zero.

For similar computational studies we refer to [9] where the authors considered a rigid-plastic
model with 3 slip systems and the initial orientation of 0.417 rad.

4.2. Symmetric double slip
As a special case we consider the symmetric double slip for high rate sensitivity parameter
m = 0.005. The values of the magnitude of the velocity, the density, and the slip rates
for three different strains are presented in Figure 5. By strain we understand the nominal
strain e = (h −H0)/H0, where h and H0 stand for current and initial height of the specimen,
respectively. All the results where computed up to nominal strain 0.3.

The shear banding seen in Figure 5 to occur, some sort of a material or geometric imperfection
must be present in the specimen. Following [11] the imperfection of the specimen was introduce
by the perturbation of the right-hand side of the boundary, namely

x1|Γ2 = x1 + 5× 10−6 cos

(
πx2

L0

)
. (19)

5. Conclusions
• Plastic behavior of crystalline solids is treated as a material flow through an adjustable

crystal lattice space. The material flow is characterized by the velocity field and the lattice
space is treated as a solid, its distortion is measured with respect to a lattice reference
configuration.

• While the Eulerian formulation is very well suited for flow-like problems, as for example
an equal channel angular extrusion experiment [10], in the case of a simple compression
simulated here we deal with a free boundary problem. For this reason we employ the
Arbitrary Lagrangian Eulerian (ALE) approach in the sense that we use the Eulerian
formulation on a moving mesh which captures the free boundary.
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Figure 3. The evolution of the angle of the lattice rotation of single crystal for initial lattice
rotation α0: 0.2 rad (1) and 0.4 rad (2) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c) in the
square and rectangular domains.

• To test the proposed approach based on ALE method we consider the two-dimensional
single crystal plane strain compression as in Harren et al. [11]. In agreement with Harren’s
et al observations, our model predicts that the lattice reorientation of the single crystals of
various initial crystallographic orientations tends to bring the crystals toward the geometry
coincided with a stable state of symmetric slip. The simulations in the case of symmetric
double slip lead to the formation of the shear bands which corresponds to Harren’s et al
results.

• Since our method is based on Eulerian formulation it should be capable of solving
deformations with very large strains for suitably defined problems, i.e. in the sense that we
treat the material as a fluid. The reason is that the priority is not the displacement and the
strain but the velocity of the material flow and the distortion of the crystal lattice space.
Here, when combined with mesh moving to capture the free boundary motion the method
is able to reproduce a solutions obtained by Lagrangian based methods, as e.g. in [11].
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Figure 4. Velocity field and slip rates on individual slip systems for single crystal of the initially
square and rectangular shapes with initial lattice rotation 0.2 rad at nominal strain 0.3.

Appendix
This section is directed to the derivation of the evolutionary equation for the Cauchy stress. To
this aim we introduce two additional stress measures, the Kirchhoff stress, S, and the ”lattice
based” second Piola-Kirchhoff stress, Σ. The Kirchhoff stress is related to the Cauchy stress by

S = T /% or S = T detFe/%0,

and the relation between the Kirchhoff and the Piola-Kirchhoff stress reads

S = FeΣFe
T . (20)

Notice that S is an Eulerian stress measure and Σ refers to Lagrangian system of coordinates.
We assume that the Helmholtz potential depends on the Green tensor Ψ = Ψ(Ee) and that

the second Piola-Kirchhoff stress Σ, is the derivative of Ψ with respect to Ee

Σ =
∂Ψ(Ee)

∂Ee
. (21)

Differentiation of (21) with respect to time yields

Σ̇e =
∂2Ψ

∂Ee∂Ee
Ėe = CĖe, where C =

∂2Ψ

∂Ee∂Ee
. (22)

Our goal is to express relation (22) in terms of the Kirchhoff stress S and the symmetric part
of the velocity gradient D. Differentiating (20) with respect to time we get

Ṡ =
˙

FeSFe
T = ḞeΣFe

T + FeΣ̇Fe
T + FeΣ

˙Fe
T (23)

Substituting (3), (20) and (22) into (23) gives

Ṡ −LeS − SLe
T = Fe

(
CFe

T (De)Fe

)
Fe

T = CDe = C(D −Dp), (24)
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Figure 5. The evolution of the velocity (top-left), the density (top-right),
and the slip rates (bottom) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c).

where C is a fourth order material elasticity tensor (as a derivative of tensorial function w.r.t.
second order tensor) and C is a fourth order spatial elasticity tensor. They are related by

Cijkl = F eiKF ejLF ekMF elNCKLMN . (25)

On the left hand side of the formula (24) we obtained Truesdell rate of the Kirchhoff stress.
Equation (24) is equivalent to the one containing the Jaumann rate of the Kirchhoff stress

Ṡ −WeS + SWe = C(D −Dp) + DeS + SDe (26)

It is common to neglect term DeS + SDe on the right hand side of (26), see eg. [14].
Without this assumption the Helmholtz potential approach does not lead to the Jaumann rate
of the Kirchhoff stress, see [15].

To reformulate (24) in terms of the Cauchy stress we substitute S = T /% and deduce

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp). (27)
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Moreover we substitute the Helmholtz potential to the dissipation formula (10)

S : D − Ψ̇ = S : D − ∂Ψ(Ee)

∂Ee
: Ėe = S : D −Σe : Ėe (28)

= S : D −Σe : Fe
T (D −Dp)Fe = S : D − FeΣeFe

T : (D −Dp) (29)

= S : D − S : (D −Dp) = S : Dp. (30)

If the dissipation is caused by the material flow only, it follows from eqs. (10), (5) and (11) that

S : Dp =
N∑
i=1

τ (i)ν(i) ≥ 0. (31)

The validity of the dissipation inequality (10) is guaranteed by the requirement g(i) ≥ 0 and the
yield conditions (12).
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