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Abstract. An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is 

described. The model system - a hard wedge sliding against a metal surface - is representative 

of surface conditioning processes typical of manufacturing, and sliding wear. By combining 

high speed imaging and image analysis, important characteristics of unconstrained plastic flow 

inherent to this system are highlighted. These characteristics include development of large 

plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like 

flow with vortex formation and surface folding, and defect and particle generation. Preferred 

conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for 

surface conditioning in manufacturing, modeling of surface deformation and wear are 

discussed.  

1. Introduction 

The use of sliding-type deformation to impose large plastic strains on surfaces is a central feature of 

many surface conditioning (deformation) processes for metals such as friction stir processing, 

burnishing, surface mechanical grinding,  sliding, peening and even machining [1-3]. Intrinsic to this 

surface SPD is unconstrained plastic flow, which differs from the constrained flow more common to 

deformation processing. Unconstrained plastic flow by sliding-type deformation is also ubiquitous in 

wear of metal surfaces by abrasion, adhesion and delamination [4, 5]. In all of these instances, the 

surfaces show extensive deformation, as do the chips and particles generated by the processes. This is 

a consequence of high pressures, on the order of the material hardness, applied by an indenter 

(asperity, tool) sliding on the surface. A basic understanding of the characteristics of surface plastic 

flow should be of value in designing surface conditioning processes, and in analyzing and controlling 

wear at sliding metal interfaces [6].  

The typical experimental approach that has been used in studying surface flow is investigation of 

the resultants of the process system at various stages and reconstructing a picture of what is going on 

[7]. The problem with this “post-mortem” examination is that evidence of the critical, unit material 

interaction events is often masked or erased. Nevertheless, this type of examination has led to 

important insights into flow phenomena occurring in surface conditioning and wear [5, 8]. It has also 

enabled analytical models of the processes to be formulated using continuum approaches - slip line 

field (SLF), shake-down and finite element analyses (FEA) [9, 10]. 

A complementary experimental approach to studying these flow phenomena is by in situ 

investigation of the process zone with a model sliding system, wherein the unit events relevant to 

surface conditioning processes and wear can be directly observed. Such a system is provided by the 

sliding contact between a sharp wedge (tool, asperity) and a surface under conditions of plane strain 

(2D) deformation [1, 9]. The present work describes an in situ study of material flow in metal surfaces 
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created by a hard wedge indenter. The observations pertain to material flow in the process zone, 

strain/strain rate fields, imposition of large plastic strains on the surface, and wear particle formation. 

  

2. Experimental 

The experimental system (Fig. 1) consisted of a workpiece (WP) in the form of a plate sliding against 

a hard steel wedge indenter at speeds V of up to 50 mm/sec [11, 12] under conditions of 2-D 

deformation. The relatively low speeds minimize temperature influences. A sharp indenter edge (< 10 

µm edge radius) was used to minimize rubbing-induced deformation at the indenter-WP contact. The 

indenter rake angle (α) is adjusted by changing the orientation of the indenter and the depth of tool-

work interaction (ho) is varied by using a micro-stage (Fig. 1). The WP systems were commercially 

pure Al (grain size ~ 200 µm) and OFHC Cu (grain size ~ 118 µm) in an initial annealed condition. 

The flow of metal in the process zone was observed using a high-speed imaging system (PCO dimax 

CMOS camera) coupled to an optical microscope assembly (Nikon Optiphot). Flow patterns and 

quantitative details of the deformation were obtained by application of Particle Image Velocimetry 

(PIV) to the image sequences [11, 13]. PIV involves use of tracers or particles dispersed in the 

medium and tracking the motion of particle ensembles by digitizing high-speed images of the ‘flow’ 

[14, 15]. The particles in the experiments were ‘asperities’ - roughness features deliberately introduced 

onto the WP surface being imaged by abrasion with 1200 grit SiC paper. An optically transparent 

glass plate was used to lightly constrain the imaged side so as to minimize out-of-plane flow of 

material during the sliding. The camera sensor had a full resolution of 2016 x 2016 pixel and physical 

size of 22.18 x 22.18 mm. Images could be recorded at up to 1279 fps using the full sensor area. 

Higher imaging speeds could be achieved by reducing the sensor area; for example, when the image 

size is 1296 x 720 pixel, framing rates of up to ~5000 fps are possible. The PIV analysis was used to 

estimate displacement/velocity and strain/strain rate fields in the deformation zone [11, 13, 16], and 

characterize the SPD. Stream-, streak- and path- lines of flow (analogous to fluid flow) were obtained 

from the displacement and velocity fields [12]; these were particularly useful for visualizing the flow 

features. 

 

 
 

Figure 1. Schematic of the experimental setup (left) and parameters (right). 

3. Results 

The in situ imaging and the PIV analysis have revealed interesting, including hitherto little known, 

aspects of unconstrained plastic flow and SPD in sliding contact.  
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Flow patterns Figure 2a shows one frame from a high speed image sequence of lubricated sliding 

of Al with α = -75
o
. A prow of material of height hp is seen to build up ahead of the wedge, similar to 

that noted and analyzed in prior sliding experiments [17].  The superimposed streaklines derived from 

the high speed images indicate a smooth steady flow analogous to laminar (fluid) flow. This flow 

pattern is similar to that usually assumed in SLF analysis of sliding. The effective strain rate (dε/dt) 

field for this sliding condition is shown in Fig. 2b, while Fig. 2c shows the strain rate variation along 3 

particle paths.  Two regions of intense strain rate – one in the prow region (A) and the other in the 

vicinity of the indenter tip (B) – may be noted (Fig. 2b). The maximum dε/dt is ~ 12/s and occurs in 

the indenter tip region B. Other PIV measurements showed dε/dt to increase approximately linearly 

with V.   

 

Figure 2. Prow formation and laminar flow in sliding of Al: (a) image with superimposed streak lines 

showing laminar type of flow, (b) strain rate field after 1 pass of sliding, and (c) time histories of strain 

rate for material points travelling along the pathlines shown in (b). α = –75°, V = 5mm/s, 1000 fps, 

fluid: Mobil 1. SD - sliding direction of WP. 

The strain (ε) field is obtained by accumulating the incremental strain – that is integration of the 

dε/dt field - along particle paths such as 1-3; this field is plotted in Fig. 3. This laminar strain field is 

seen to be quite homogeneous with a surface ε value of ~ 1. Also, this strain is uniformly distributed to 

a depth of ~ 250 µm into the subsurface. The depth of the uniformly strained region was found to scale 

with hp; hp in turn is determined by h0 and the ductility of the surface layer. It is of interest to note here 

that the corresponding large strain field imposed by material removal processes such as machining not 

only extends to a much smaller depth (~ 20 µm) but is also much less uniformly distributed into the 

subsurface [11], compared to this sliding field.   
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Figure 3. Subsurface strain field (averaged) in the Al after 1 sliding pass. The path lines of Fig. 2b are 

superimposed onto the strain field. α = –75°, V = 5 mm/s, 1000 fps, fluid: Mobil 1. SD - sliding 

direction of WP. 

The characteristics of the laminar flow pattern and strain field in OFHC Cu were found to be 

similar to that in the Al. Figure 4 shows the variation of ε with depth into the subsurface for Cu in 

multiple pass sliding, as measured by the PIV. The ε imposed in each of the 1
st
, 2

nd
 and 4

th
 passes of 

sliding is given in Fig. 4a. It is clear from these measurements that a uniformly strained region of 

depth ~ 400 µm is created by each pass of sliding, be it the first or a subsequent pass. The ε per pass (~ 

0.8 - 1.6) is, however, influenced by the prior deformation of the surface.  The total ε accumulated in 

the 4 sliding passes and its variation with depth is shown in Fig. 4b. A uniformly strained layer, with ε 

~ 5 and of depth ~ 400 µm, is seen to be created on the surface. Below this depth, the ε value 

decreases somewhat steeply; the overall depth of the strained layer (uniform + non-uniform region) is 

~ 800 µm. Strains as large as 12 have been measured on the surface after 8-10 passes in this sliding 

mode.  These measurements show that a laminar-type surface flow mode coupled with multiple-pass 

sliding is quite suitable, perhaps ideal, for imposing large uniform strains over substantial depths on 

metal surfaces. 

 

 
Figure 4. Subsurface strain in multiple pass sliding of OFHC Cu under laminar flow conditions: a) 

strain accumulated in each pass, and b) total strain accumulated in the 4 sliding passes. α = -70°, V = 

1mm/s, h0 = 100 µm, fluid: Coolube 2210.  

SLF and other continuum analyses of sliding predict that the surface ε value should increase when 

α is made less negative, enabling greater levels of ε to be imposed in a sliding pass [1, 17]. As this 

would be beneficial for surface SPD processing (e.g., microstructure refinement), in that larger strains 

could be imposed in fewer passes, a study was made of the effect of α on ε. Figure 5 shows a typical 

measured strain field in sliding of Al for  α = -65
o
. The surface ε levels (~ 2 - 2.5) are indeed much 
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greater than for α = -75
o
 (Fig. 3). But considerable variation is seen in the strain values on the residual 

surface in the wake of the wedge, along with steeper strain gradients into the subsurface. The surface 

strain pattern shows a “lamellar” structure along the WP length with alternating regions of higher and 

lower ε. This is certainly undesirable from an SPD processing standpoint and is, certainly, contrary to 

SLF predictions.  

 

Figure 5. Subsurface strain field in the Al after 1 sliding pass for α = -65
o
. The red arrows show 

regions of strain concentration on the surface while the blue arrows point to the less strained regions. 

V = 5 mm/s, 1000 fps, fluid: Mobil 1. SD – sliding direction of WP.  

Examination of flow patterns from high speed image sequences have provided the answer to the 

origin of the strain heterogeneity observed at the less negative rake angles. Furthermore, they have 

revealed an unusual, non-steady surface flow (Fig. 6) – with highly sinuous near-surface streakline 

pattern - that until recently appears to have not been highlighted [12]. Figures 6a-d show the evolving 

flow pattern using 4 frames from a high speed image sequence for α = -65
o
. The outstanding features 

of this pattern are the formation of small “bumps” - surface protuberances – ahead of the wedge, and 

the occurrence of self-contacts between successive bumps that result in fold-like features (folds) on the 

surface. The green and red arrows in Fig. 6a show the position of two bumps ahead of the wedge. With 

continued sliding, these bumps grow in height to ~ 50-100 µm while coming closer together and 

interacting to make a self-contact (fold); one such fold can be seen at white arrow in Fig. 6b. The 

propagation and evolution of this fold – a surface instability - is shown in Figs. 6c and d. Fold 

formation precedes contact with the wedge face. Multiple folds may be seen traversing the wedge-WP 

contact face in Figs. 6c and d.  The development of these folds is also well revealed in the changes in 

the curvature of the streak lines immediately below the “surface”. As a fold exits the contact, its 

orientation is changed by stretching and rotation. Crack- and tear- like features are left behind on the 

surface – defect remnants of the folds - in the wake of the wedge, see for example at white arrow in 

Fig. 6d. The sinuous nature of the streak lines at this sliding condition, and the fold patterns, indicate 

that the flow is highly non-laminar and vortex-like at this sliding condition, in contrast to Fig. 2. This 

flow is quite different from that commonly assumed (or predicted) in triboplasticity [9, 10]. Bumps 

and folds were found to become more frequent at smaller negative rake angles.  

Heterogeneous plastic flow arising from the grain structure in polycrystalline metals has been 

identified as the cause for the bump-formation (via local variations in deformation) and ensuing 

folding observed under the non-laminar flow conditions [12]. The key parameters influencing folding 

were found to be the ratio of the grain size to prow height (hp), ductility of the surface layer and 

interface friction. 

The non-uniformity in the surface strain distribution in Fig. 5 is a consequence of the non-laminar 

surface flow and surface folding, with each strain lamella corresponding to the residue from a fold. 

The peak strain value on the residual WP surface associated with a fold is ~ 2.5 (Fig. 5), substantially 

higher than that noted for the laminar flow strain field and also ~ 25 percent greater than that occurring 

in the non-folded areas of the surface.  
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Figure 6. Four frames with streak-lines from a high speed image sequence showing development of 

bumps and folds in Al. α = -65
o
, V = 5 mm/s, fluid: Mobil 1, 1000 fps. The green and red arrows show 

evolution of specific bumps, while the white arrow shows evolution of a specific fold into a crack-like 

feature on the residual surface. SD - sliding direction of WP.  

Wear particles When a fold (red arrow in Fig. 7a) emerges from the contact region, it splits 

leaving behind a tear (blue arrow in Fig. 7b) and a complementary crack-like feature (green arrow in 

Fig. 7b) on the surface. Figures 7c and d show SEM pictures of the crack-like features and tears on the 

surface. The tears usually project upward and in a direction opposite to that of the crack-like features. 

Since these latter features are usually embedded in the subsurface, they may not be visible in a surface 

examination. Metallographic examination of the subsurface, however, is adequate to reveal them. In a 

subsequent sliding pass of the wedge, the tear- and crack- like features are “dislodged” from the 

surface resulting in wear particles. This is a barrier to surface SPD by the application of repeated 

sliding passes at this α.   

The folds and tears resemble closely, features seen on surfaces after sliding wear [5, 18], 

delamination [19] and abrasion [20]. However, past studies have attributed the occurrence of these 

features to origins other than fold formation. Folding, tears and crack-like features have also been 

observed in sliding of copper and brass [12]. The present observations also show that wear particles 

can develop in sliding by a folding-type mechanism in as little as 1-2 sliding passes. It suggests a 

mechanism for moderate/severe sliding wear that does not require chip formation by cutting due to 

asperities interacting with a surface, as postulated by Kopalinsky and Oxley [10] and Johnson [9]. In 

fact, formation of wear particles by cutting requires asperity incidence angles much greater than those 

typical of sliding contacts. 

The observations of the present study should hold equally well for other tool and WP geometries 

(e.g., cylinder, sphere), if the local rake angle is used in place of the wedge rake angle. 
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Figure 7. Two frames from a high speed image sequence showing formation of tear- and crack-like 

features on the Al surface. The blue and green arrows point to a tear and a (complementary) crack-like 

feature, respectively, formed by splitting of the fold shown in a) as it exits the contact. SEM 

micrographs showing typical (c) crack-like features and (d) tears on the Al surface in the wedge wake. 

α = –60°, V = 5 mm/s, 1000 fps, fluid: Mobil 1. SD – sliding direction of WP. 

 

4. Summary and Implications 

The high-resolution, in situ study of deformation produced by a sliding wedge has revealed unique 

aspects of unconstrained plastic flow at metal surfaces. At very large negative rake angles, a smooth 

laminar flow pattern prevails under the wedge. The corresponding flow field is characterized by 

uniform strains of ~ 1 (per sliding pass) extending to large depths into the subsurface. At this sliding 

condition, the strained layer on the surface can be accumulated to large levels, using multiple sliding 

passes, making it the preferred configuration for surface SPD processing. This type of laminar-SPD 

processing can be implemented for surface conditioning of curved surfaces as well using commonly 

available equipment. A highly non-laminar type of flow takes over when the wedge rake angle is made 

less negative. This type of flow triggers formation of primitive vortex-like structures and folds on the 

surface; and tears and crack-like features in the wake of the wedge due to the folding. Since the 

surface strain now is quite non-homogeneous, and, furthermore, the tears and cracks can produce wear 

particles by delamination in as few as 1-2 sliding passes, multiple pass SPD becomes infeasible at this 

condition. The non-laminar flow is not predicted by the common continuum approaches used to model 

surface deformation processes and triboplasticity.  

Some implications of the study for surface conditioning and sliding wear may be noted: the need 

to utilize deformation geometries (local rake angles) that promote laminar-type flow for multi-pass 

surface SPD; control of grain size of the initial workpiece material for improved surface conditioning 

and reducing sliding wear; consideration of folding as an important mechanism for formation of wear 

particles, and re-assessment of current mechanisms for wear particle generation in sliding and abrasive 
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machining systems; and incorporating material surface heterogeneity in modeling of surface 

deformation processing and triboplasticity.  

Future work will explore the effects of variables such as material grain size, ductility and 

temperature (high speed sliding) on the flow phenomena. 
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