International Symposium on Interfacial Joining and Surface Technology (IJST2013) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 61 (2014) 012043  doi:10.1088/1757-899X/61/1/012043

Effect of shape of elastic beam hair on its adhesion with wavy
surfaces

Pasomphone Hemthavy', Takehiko Yazaki', Boqing Wang!, Yu Sekiguchi’ and

Kunio Takahashi'

1 Department of International Development Engineering, Tokyo Institute of
Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, JAPAN

2 Precision and Intelligence Laboratory, Tokyo Institute of Technology,
4259-R2-31 Nagatsuta, Midori-ku, Yokohama 226-8503, JAPAN

E-mail: pasomphone@ide.titech.ac.jp

Abstract. An analysis on a tapered elastic beam whose side surface partially adhered to a rigid
surface was carried out to study the effect of the beam shape on the gripping force. Considering
the total energy of the system, the relation between the gripping force and the displacement
was obtained analytically in closed form. The analytical result is significant because it provides
an intuitive picture of the gripping force. Although, an individually tapered beam can generate
less gripping force for flat or slightly wavy surfaces, compared to a rectangular beam, the
analysis result suggests that the tapered beam has more ability to absorb surface waviness. This
result can be applied to a multi-beam structure.

1. Introduction

Geckos have a myriad of hierarchical hair structures on their foot fingers, consisting of setae and
spatulae. The mechanism of adhesion of the gecko’s foot hair was observed to be mainly due to
intermolecular surfaces forces [1, 2]. Nano-scaled spatulae at the top of the setae generate an adhesion
force so that geckos can hang from roof surfaces as well as climb vertical walls [3]. Though a single
foot hair demonstrates a negligible adhesion force, the myriad of slant hair structures enables adhesion
to smooth surfaces with high interfacial shear strength [2, 4]. The gecko’s foot hair was observed to
have a tapered shape towards its tip with a patch on the tip of each spatula [1]. Since these discoveries,
many attempts have been made to replicate the functional structures of gecko’s foot hair by utilizing
polymers of a precise size [5-10]. Multi-beam structures with mushroom tip shapes or tapered beams
have also been fabricated and studied experimentally [5, 10]. However, theoretical study on the
functional structure of the gecko’s foot hair has not been as extensive. Takahashi et al. have researched
a release mechanism that allows geckos to take quick steps and their ability to grip rough surfaces
from the macroscopic point of view by assuming the seta as a curved slant beam, which can be
controlled by normal and tangent forces [3]. Sekiguchi et al. have investigated the adhesive force
between a side surface of a rectangular elastic beam and a flat surface of a rigid body [11]. However,
the effects of the beam shape have not been clearly studied. In this study, we assume a tapered elastic
beam, i.e., one with bending stiffness tapering along its longitudinal axis, to study the effect of the
beam shape on the gripping force. By considering the minimum energy condition of the total energy of
the system, the effect of the adhesion phenomenon is included in the process for obtaining the relation
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between the gripping force and the displacement of the beam. The ability of a multi-tapered beam
structure to absorb surface waviness is also discussed.

2. Adhesion model between elastic tapered beam and flat rigid surface

Figure 1 shows a schematic illustration of the elastic tapered beam used in this paper for modeling the
function of a single gecko foot hair. The shape of this tapered beam can be expressed by assuming the
varying bending stiffness along the longitudinal axis of the beam as

EI:EOI()(l—%j 0<n<l), (1)

where E is the Young’s modulus and / is the moment of inertia of the area of the elastic beam, Eoly is
the bending stiffness at the base of the beam, L is the length, and x represents the distance along the
longitudinal axis of the beam. The width W of the beam is supposed to be constant in order to study
the one-directional function of the beam. Figure 2 shows the distribution of the bending stiffness along
the longitudinal axis of the beam, plotted by equation (1).
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Figure 1. Schematic illustration of a tapered beam model used.
The figure on the left-hand side shows the entire view of the
beam with its geometries. The figure on the right-hand side is the
side view of the beam.
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Figure 2. Distribution of the bending stiffness over the distance
on the longitudinal axis of the beam.
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As shown in figure 2, when n=0 the bending stiffness has a contant value (horizontal straight line),
which is equivalent to a rectangular beam, for example. When n=1, the bending stiffness varies
linearly along the longitudinal axis toward one end of the beam (dashed line). However, for n=1, there
are singularities in the analytic result (described in section 3) which complicate the calculation of the
gripping force. Consequently, without losing the essence of the study, we take the range of n to be
0<n<l.

Figure 3 illustrates the loading and unloading process of the cantilever tapered beam to enable it to
grip and release a flat rigid surface. As shown in the figure, the beam is fixed at the base with an
inclined angle @ to the horizontal line. The loading process is performed by applying the displacement
to the base of the beam, which brings it into contact with the rigid surface, as shown in figure 3(a).
When the beam reaches the rigid surface, it starts contacting the surface from its tip edge, which is
here defined as “line contact,” as shown in figure 3(b). When further displacement is continually
applied, the rigid surface presses the edge of the beam with a force £, giving rise to its deformation. As
a consequence, the beam adheres to the rigid surface on its bottom side, which is defined as “area
contact,” as shown in figure 3(c). In static contact, the adhered area of this area contact will settle at an
equilibrium that depends on the magnitude of the given displacement.

In the unloading process, starting from area contact, the beam is gradually moved up by applying a

displacement in the opposite direction to that of the loading process; this decreases the adhered area,
as shown in figure 3(d). When the adhered area finally decreases to line contact, as shown in figure
3(e), the beam finally detaches from the rigid surface, as shown in figure 3(f). This is considered the
separation condition of the beam.
In this paper, we adopt the following assumptions for the adhesion model so that the linear beam
theory can be applied. The beam is assumed to have small lateral deformation without longitudinal
deformation. In addition, the weight and rotation of the beam and the frictional slip between the beam
and rigid surface are assumed to be negligibly small.
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Flgure 3. Schematic illustration of the loading process (a)—(c) and
unloading process (d)-(f) of the beam. The beam approaches the
rigid surface by the applied displacement (a); it starts contacting the
surface at its tip edge (line contact) (b); a part of its bottom side
adheres to the surface (area contact) (c). Unloading the beam
decreases the contact area (d); the contact changes from area contact
to line contact (e); the beam finally detaches from the surface (f).
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3. Force between the elastic beam and the rigid surface

Our main task here is to obtain the relation between the gripping force of the beam to the rigid surface
and the applied displacement. A mathematical model of the beam for line contact and for area contact
are assumed, as shown in figures 4 and 5, respectively. A system of coordinate axes (x,y) with the
origin located on the longitudinal axis at the fixed end of the beam is used. The displacement d applied
to the beam is measured from the rigid surface to the base of the beam with a negative upward
direction. When the beam is in contact with the rigid surface, the force f between the rigid surface and
the beam acts perpendicularly to the rigid surface.
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Figure 4. Schematic illustration of line Figure 5. Schematic illustration of area
contact of the beam with the rigid surface. contact of the beam with the rigid surface.

3.1. Force during line contact

During line contact, as shown in figure 4, the force f acting on the tip of the beam causes the beam to
deflect slightly. The corresponding deflection of the beam, i.e., y(x), is required to obtain the relation
between the force f and the applied displacement d. On the other hand, according to the assumption
that the base of the beam is fixed, the boundary conditions »(0)=0 and dy(x)/dx=0 at x=0 should be
satisfied. From figure 4, the shearing force at any section of the beam, which is given as

S=—fcosf (0<x<1L), (2)
gives rise to the internal bending moment M(x) of the beam, which is expressed as
M (x)=—-fcosO(L—x) (0<x<1l). 3)
The basic equation of the deflection curve of the elastic beam is given as
&y __ME .
dx*  EI @

From the bending stiffness of the beam, the internal bending moment, and the basic equation of the
deflection curve (equations (1), (3), and (4), respectively), the deflection y(x) of the beam, which
satisfies the above-mentioned conditions, is obtained as

y(x) = - JL c0s0 {(l—fj n—(n—s)%—l}. 5)

(n=2)(n-3)E,I, L

From the geometry of the beam shown in figure 4, and the deflection of the beam’s tip, i.e., y(L), it
yields the relation between the displacement and the deflection of the beam as

Lsin@=-d—y(L)cosé. (6)
Finally, by substituting equation (5) into equation (6), we can obtain the relation between the force f
and the applied displacement d for line contact as

~cos® (GB-n)( d
= +1 , 7
ftan@ 12 (sin@ ] @
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where f and d are dimensionless quantities, normalized as 7 = fI(12E,1,/L*) and d=d/L,

respectively.
If further displacement is applied to the base of the beam, the beam’s tip deflects. Therefore, when
the beam deflects so that the slope of the tip equals that of the rigid surface, satisfying the following
condition
d
DI~ _tang , (8)
dx x=L
the bottom side of the beam begins to adhere to the rigid surface. This is area contact, as shown in
figure 5. From equations (5) and (8), the shifting condition from line contact to area contact is
obtained as
d 1
sind n-3

(€)

3.2. Force during area contact
The relation between the force f'and the applied displacement d for area contact can be obtained in the
same manner as described in the previous subsection, except for the following considerations. During
area contact, the adhered portion of the beam conforms to the rigid surface, so that it can be considered
the fixed end. Therefore, the force f acting on the edge of the adhered portion causes the rest of the
beam to deflect, as shown in figure 5. The area of the adhered portion is defined as (L —/)xW , where
/ is the length of the portion of the beam that is not adhered to the rigid surface.

Both ends of the beam are fixed, in contrast to line contact, so the bending moment of the beam is
given as

M(x)=—fcosOx+M, (0<x<)), (10)
where M, is determined by the boundary condition of the slope of the beam at x=/. The shearing force

and the boundary conditions at x=0 are the same as those for line contact. The relation between the
force and the displacement of the beam for area contact is obtained as

fcose _ (n—=1)(n-2)*(n-3)

tan @ 12
_[(1_7)1,1_1]{ d_, (0=1)"[(n=-D] —1]+1}
. sind  (n-2)[(1-1)""-1]
n(n=2)n-3)12A=0)"+n=-3)[1-1) " -1 =2 -2)[A=D)"" =1][(1=1)*" =11

(1)

where [ is the normalized non-adhesion length of the beam, defined as I =I/L.
However, [ is still unknown. In order to determine / , it is necessary to take into account the
minimum energy condition of the total energy of the system. We define the total energy of the system

U . as the sum of the elastic energy U . and the surface energy U_ . ., denoted as

Utotal = U + Usurface . (12)

The elastic energy due to the deflection of the beam is given as
I} 2

elastic

Uelastic = _([ 2EI dx H (13)

and the surface energy of the adhered area is

U =—Ayx(L-D)xW, (14)

surface
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where Ay is the work of adhesion required to separate a unit area of adhered surfaces.
The total energy of the system is obtained as

~

U

total

=12tan’ 9(? cos ¢ ]2 [(A-1)"" =11 =(n-2)*T*(1-1)""
tan @ (n_2)2(n_3)[(1_7)1—n _1]

tan’0 n-1 —
+ n _ATA-T, 5
2 a4 (1>

where U, =U, /(6E,1,/L) and A7 =3AyW [(6E,I,/L*) . According to the total energy

total
obtained above, / can be determined by searching for the minimum energy, which occurs when

8l7ttl
——toal ), 16
e (16)

4. Calculated results
For convenience in the calculation, we define here the adhesion parameter related to the work of

adhesion and the width of the beam as
T \3ApW
tan @ tand

Solving equation (16) gives us the value of I for each adhesion parameter. Then, by substituting the

value of / into equation (11), we consequently obtain the relation between the normalized force and
the normalized displacement, as shown in figures 6 and 7.

As shown in figure 6, when the beam approaches the rigid surface, the tip of the beam starts touching
the rigid surface at Py, i.e., when d/(Lsin@)>—1, and the force for line contact expressed by

equation (7) will have a positive value. When further displacement is applied between Py and P, the
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Figure 6. Relation between the normalized force and the

normalized displacement, calculated for the adhesion parameter
I'/tan@ =1.0 and 1.5, and 1n=0.5.
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beam remains in line contact, and the force, which satisfies equation (7), varies along the straight line.
The force during line contact is repulsive. After the displacement reaches P, which is the shifting
condition from line contact to area contact expressed by equation (9), the contact changes to area
contact and the force no longer satisfies equation (7). In consequence, the force jumps from P; to P to
follow equation (11) instead. During area contact, the force curve has several paths according to the
value of the adhesion parameter, and the force is attractive. The force varies along each curve,
responding to the applied displacement. If an appropriate displacement is applied for the adhesion
parameter, the minimum energy exists, and the beam will adhere to the rigid surface at equilibrium.
When the beam is unloaded, the force varies along the curve to the left of P,. When the given

displacement reaches the condition / =1 at P3, the beam finally detaches from the rigid surface. The
maximum gripping force of the beam can be considered as the measurement of the minimum of each
force curve.

Figure 7 shows the relation between the normalized force and the normalized displacement, which is
plotted for different values of n. When n=0, i.e., the beam is uniformly rectangular, the analysis result
of the present study exactly coincides with the result of the previous work of Sekiguchi [11].

According to the shifting condition from line contact to area contact, expressed by equation (9), the
displacement is in inverse proportion to n. This implies that as the value of n increases, the
displacement necessary for shifting to area contact decreases. In other words, the tapered beam could
have more ability to absorb the surface roughness compared to a uniformly rectangular beam.
However, the maximum gripping force generated by an individual tapered beam decreases as the value
of n increases.

0.3

I'/tan6 =1.0
0.2 L 7=0.0 for Rectangular beam

Normalized force
f/12EI, sin 0/(L*cos?6)

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Normalized displacement d/(L sin 6)

Figure 7. Relation between the normalized force and the
normalized displacement for different values of #.

5. Effect of the shape on the gripping force of a multi-beam structure adhering to a wavy surface
To discuss the effect of the beam shape on the gripping force of a multi-beam structure adhering to a
wavy surface, we assume a one-dimensional multi-beam structure consisting of a number of individual
beams (100 beams were used in this study) fixed to a substrate with a uniform interval and declined
angle 6, as shown in figure 8. The waviness of a rigid surface is assumed to be sinusoidal of single
wavelength A and amplitude A. In order to apply the adhesion model of this study, it is assumed that
each area on the sinusoidal surface to which the beam’s tip adheres is considerably in parallel to the
substrate of the multi-beam structure, as shown in figure 9. The multi-beam structure is loaded until its
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substrate touches the convex part of the surface, before unloading to measure the gripping force. The
total gripping force of the multi-beam structure is considered as the superposition of each individual
beam.

Figure 10 shows the analysis result of the normalized gripping force against the normalized
amplitude of the surface waviness. The white rectangular mark denotes the results of the multi-
rectangular beam structure, and the black triangle mark denotes the results of the tapered beam
structure. As shown in the figure, the multi-rectangular beam structure can generate a larger gripping
force compared to the multi-tapered beam structure when the rigid surface is flat or slightly wavy.

Multi-beam structure
Substrate
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| Rigid body with wavy surface |

Figure 8. Schematic illustration of a one-dimensional multi-
beam structure contacting to a sinusoidal wavy surface.
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Figure 9. Simplification of the sinusoidal surface as steps
parallel to the substrate to measure the gripping force.
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Figure 10. Normalized gripping force of a one-dimensional
multi-beam structure against normalized amplitude of surface
waviness.
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However, when the normalized amplitude A4/(Lsin @) of the surface waviness exceeds a certain

value, e.g., 0.16 for this analysis, its gripping force rapidly decreases and becomes lower than that of
the multi-tapered beam structure. The analysis result suggests that the multi-tapered beam structure
could have more ability to absorb the surface waviness compared to the multi-rectangular beam
structure.

6. Conclusion

A tapered beam model with a varying bending stiffness along its longitudinal axis was assumed to
study the relation between the gripping force and the applied displacement analytically. The analysis
results were obtained in closed form, which provides an intuitive picture of the gripping force.
Although each tapered beam can generate less gripping force than a rectangular beam, increasing the
value of n can enable the tapered beam to absorb surface waviness. When the beams are compiled to
form a multi-beam structure, rectangular beams create a greater gripping force for flat or slightly wavy
surfaces, whereas tapered beams create a greater gripping force for more wavier surfaces. The result of
this study is considered significant for designing a grip-and-release device using tapered beams.
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