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Abstract. Enhancing stall and surge margin has a great importance for the development of turbo 

compressors. The application of casing treatment is an effective measure to expand the stall 

margin and stable operation range. Numerical investigations were conducted to predict the 

performance of a low flow rate centrifugal compressor with circumferential groove casing 

treatment in vane diffuser. Numerical cases with different radial location, radial width and axial 

depth of a circumferential single groove and different numbers of circumferential grooves were 

carried out to compare the results. The CFD analyses results show that the centrifugal compressor 

with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency 

over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin 

improvement showed the optimal position for the groove to be located was indicated to exist 

near the leading edge of the diffuser, and a combination of position, width, depth and numbers 

of circumferential grooves that will maximize both surge margin range and efficiency. 

1.  Introduction 

The design of modern compressor is mainly focused on reducing stage numbers, which often leads to 

the problem of how to prevent flow instabilities such as surge and rotating stall. Additional to the 

ingenuity exercised in aerodynamic blade designing, various devices and methods have been tried out. 

Among them, casing treatment, small grooves or slots made on the endwall, has been proved to have a 

beneficial effect on increasing stable operating range of compressors.  

Numerous configurations have been tested and studied since its development [1], and among them, 

large proportion of the recent research objectives seem to be devoted exclusively to two principal 

categories. One is the casing treatment which consists of circumferentially aligned axial slots [2, 3], and 

the other is the casing treatment with axially aligned circumferential grooves [4, 5]. Both have shown a 

sufficient capability in improving stall margin, but circumferential grooves seem to have an advantage 

in practical use from a perspective of efficiency drop which associates with the stabilizing effect and the 

cost-effectiveness in mechanical processing. 

Recently, the mechanism through which circumferential casing groove enlarges the stable operating 

range in transonic compressor is becoming apparent through numerical and experimental investigations 

[5–7]. The interaction of passage shock and tip leakage vortex has often been pointed out as an important 
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factor of stall inception in transonic compressors. The casing groove is considered to have an influence 

to this flow interaction [8]; thus contributes in delaying the onset of stall. However, this literature focus 

only on the multiple grooves, which cause a difficulty in assessing the effect of each groove and to 

evaluate their contribution to the stability improvement. 

In general, the near casing flow field in compressor is highly complicated due to various effects of 

secondary flow [9, 10]. This is especially prominent in the case when shock wave is involved with the 

passage flow field, such as in transonic compressors. The flow structure changes drastically along the 

blade chord, and therefore, the circumferential grooves applied at the endwall will interact with diverse 

flow field according to their locations [11]. This indicates the necessity to investigate the effect of casing 

treatment individually corresponding to its geometric parameters in order to understand the stall 

suppression mechanism of casing treatment in detail. But up to now, there still do not seem to be a 

detailed research on centrifugal compressor. 

The objective of the present study is to obtain fundamental knowledge on the effect of the 

circumferentially grooved casing treatment on near-casing flow and stall margin of centrifugal 

compressor. First, numerical analysis of centrifugal compressor was conducted on smooth wall 

condition with detailed examination of the flow field characteristics at near stall condition. Next, 

parametric studies were carried out with respect to the radial location, the radial width, the axial depth 

of the single casing groove. Finally, numerical cases with different numbers of casing grooves were 

carried out to compare the results.  The effect of casing groove to the compressor performance and near-

tip flow structure was evaluated for each case based on stall margin improvement.  

2.  Analysis Model 

As previously explained, a centrifugal compressor rotor was adopted in the present work. The 

specifications of the impeller and diffuser are summarized in Table 1. The overall performance and flow 

passage data obtained by experiment were referred for the validation of numerical modeling, which will 

be presented below. 

Table 1. Geometric parameters of impeller and diffuser 

Impeller Diffuser 

Blade inlet diameter (mm) 140 The first vane inlet diameter (mm) 251.7 

Blade outlet diameter (mm) 240 The first vane outlet diameter (mm) 296 

Tip clearance (mm) 0.21 The second vane inlet diameter (mm) 300 

Blade outlet width (mm) 12 The second vane outlet diameter (mm) 380 

Number of rotor blades 9/9 Number of stator vanes 17 

Rotation speed (rpm) 30215 Vane outlet width (mm) 12 

3.  Numerical Method 

3.1.   Numerical Scheme.  

Steady flow simulations were performed by solving compressible Navier-Stokes equations. The three-

dimensional Reynolds-averaged Navier-Stokes equations were discretized in the computational domain 

by a cell-centered finite volume method and advanced the solution in time using explicit fourth-order 

Runger-Kutta method. The one-equation Spalart-Allmaras turbulence model was adopted to evaluate 

the eddy viscosity. In order to guarantee convergence, the artificial viscosity coefficient is added. The 

local time step, implicit residual smoothing, multi-grid method are used to improve the convergence 

speed. 

The total temperature and total pressure was applied for the inlet boundary condition. As for the 

outlet boundary condition, a given mass flow was imposed, different point corresponding to different 

mass flow rate, initial assumptions and give pressure value at the same time. Blade and wheel set as 

rotating parts, rotating speed as the design speed 30,215 RPM; Wheel cover part set as stationary part. 
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In calculation of this paper, through the increase or decrease gradually to a certain flow approximation 

numerical boundary point (nearly choke point and near surge point), the final solution convergence 

before the numerical instability is defined as a numerical boundary point (choke point and surge point). 

3.2.  Computational Grid.  

The calculation was done for the whole centrifugal compressor. The H&I topology structure is used in 

grid generation of impeller, proper encryption in the blade leading edge and trailing edge, the number 

of nodes is 1,223,952. Two series of vane diffuser using the default topology of NUMECA, the grid 

number is 202,223 and 198,695 respectively. The grids of circumferential groove is generated by ZR 

Effect function in Autogrid5. The grids of circumferential groove and blade channel are connected by 

full no-matching boundary (FNMB). The grid node of circumferential groove casing treatment in three 

directions is 41, 37, 37, respectively, the total number of nodes is 56,129. With a circumferential groove 

in the computational grid is shown in figure 1. 

  
Figure 1. Computational grid with a circumferential groove  

3.3.   Validation.  

The computational method was validated against the experimental datum. The overall characteristics 

are shown with the corresponding experimental data in figure 2. It can be seen from figure 2 that 

simulation gives a qualitatively good agreement with experimental results. In numerical simulations, the 

simple hypothesis for ideal gas, without considering the leakage loss, wheel resistance loss, constancy 

hypothesis do not tally with the actual situation and other factors, the efficiency and pressure ratio of 

the experiment are lower than the calculated result, but the overall trend is apparent, the computational 

method is able to predict the flow with sufficient reliability. 

 
Figure 2. Characteristics plot of no-treated centrifugal compressor 
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4.  Results and Discussion 

4.1.   Stall Characteristics and the Design of Circumferential Groove 

4.1.1.  Stall Characteristics in Diffuser. It is generally believed that the circumferential groove slot 

position depends on the magnitude of the location of the stall. Numerical simulation of the smooth wall 

found that in the near-stall condition, the deterioration of air flow in the impeller, lead to flow at a huge 

impact angle into diffuser leading edge, and made air separation and backflow on the no-working face 

of the first diffuser vanes. Figure 3 shows the Velocity streamlines at 95% span of diffuser in near-stall 

condition. Other than this, any notable vortex is not found among the passage. This implies that the flow 

which acts a dominant role in stall inception of the centrifugal compressor may range in the region near 

the casing. 

               

(a) Diffuser map                       (b) Partial enlargement of vortex 

Figure 3. Velocity streamlines at 95% span of diffuser in near-stall condition 

4.1.2.  The design of Circumferential Groove. In this paper, the circumferential groove slot position 

designed in the first vane and the leading edge of the second vane of diffuser where stall occurred. 

In order to determine the best slot position of the circumferential groove, a series of radial location 

of circumferential grooves were designed along the wheel side of the diffuser and numerical simulations 

were carried out. The circumferential groove with radial width of 6 mm and axial depth of 6 mm as 

initial. Figure 4 shows the slot location of circumferential grooves. For purpose of highlight the 

circumferential groove geometry characteristics, the circumferential groove naming rules would be 

designed as "axial depth _radial width_ the maximum absolute value of coordinates Y". Such as the 

number 2 circumferential groove in figure 4 is named as “6_6_139”. 

      

Figure 4. The slot location of circumferential grooves 
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For the sake of quantitative the improvement in stall margin and the influence of stage efficiency by 

circumferential groove, stable working range Ф, comprehensive improvement of stall margin ΔФ, 

polytropic efficiency improvement at designed point Δηpol were evaluated in present work. 
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4.2.  Effect of Applying Circumferential Groove 

4.2.1.  Different radial location of circumferential grooves. Table 2 lists the specific calculation results 

of different radial location of circumferential grooves as “6_6_131”, “6_6_139”, “6_6_147” and 

“6_6_159". Figure 5 shows characteristics plot of different radial location of circumferential grooves. 

Compared with the results of the smooth wall, it can be found from Table 2 and figure 5 that the 

circumferential groove number 1 (6_6_131) reached the largest stable working range of 47.48% and the 

most comprehensive stall margin improvement of 9.10%, but also caused the efficiency of the 

compressor design points  reduced by 0.28%. In the circumferential groove number 2 (6_6_139) had 

smaller efficiency to reduce by 0.23%, and stable working range is 47.11%, 8.37% stall margin 

improvement. In addition, it can be found from Table 2 that the circumferential grooves located in the 

leading edge of the first vane of diffuser can get a better expanding stability than the other 

circumferential grooves, it can be explained by the stall location which near the leading edge in diffuser. 

 

Figure 5. Characteristics plot of different radial location of circumferential grooves 
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Table 2. Results of different radial location of circumferential grooves  

Circumferential groove 6_6_131 6_6_139 6_6_147 6_6_159 SW 

Numbering scheme 1 2 3 4 - 

Qm,surge(kg/s) 0.708 0.713 0.733 0.735 0.771 

εsurge 2.3686 2.3694 2.3397 2.3465 2.3642 

ηpol,des 0.8181 0.8185 0.8179 0.8177 0.8204 

Ф 47.48% 47.11% 45.62% 45.47% 42.80% 

ΔФ 9.10% 8.37% 4.09% 4.11% - 

Δηpol -0.28% -0.23% -0.30% -0.33% - 

4.2.2.  Different radial width of circumferential grooves. Table 3 lists the specific calculation results of 

different radial width of circumferential grooves as “6_6_139”, “6_10_139” and “6_14_139”. Figure 6 

shows characteristics plot of different radial width of circumferential grooves. 

Compared with the results of the smooth wall, it can be found from Table 3 and figure 6 that the 

circumferential groove radial width increased from 6 mm to 10 mm, stable working range and 

comprehensive stall margin improvement enhanced with static pressure ratio fell and the efficiency 

decreases obviously; when the radial width increase from 10 mm to 14 mm, the static pressure continue 

to fall, stable working range and comprehensive stall margin improvement continue to increase, while 

the increasing amplitude is reduced, and the efficiency continue to decline. 

 

 

Figure 6. Characteristics plot of different radial width of circumferential grooves 
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Table 3. Results of different radial width of circumferential grooves  

Circumferential groove 6_6_139 6_10_139 6_14_139 SW 

Qm,surge(kg/s) 
0.713 0.706 0.701 0.771 

εsurge 
2.3694 2.3583 2.3476 2.3642 

ηpol,des 
0.8185 0.8152 0.8123 0.8204 

Ф 
47.11% 47.63% 48.00% 42.80% 

ΔФ 
8.37% 8.93% 9.21% - 

Δηpol -0.23% -0.63% -0.99% - 

4.2.3.  Different axial depth of circumferential grooves. Table 4 lists the specific calculation results of 

different axial depth of circumferential grooves as “6_6_139”, “10_6_139” and “14_6_139”. Figure 7 

shows characteristics plot of different axial depth of circumferential grooves. 

Compared with the results of the smooth wall, it can be found from Table 4 and figure 7 that the 

circumferential groove axial depth increased from 6 mm to 10 mm, stable working range and 

comprehensive stall margin improvement enhanced with static pressure ratio fell and the efficiency 

decreases obviously; when the axial depth increase from 10 mm to 14 mm, stable working range and 

comprehensive stall margin improvement continue to increase, while the increasing amplitude is 

reduced, and the efficiency continue to decline. 

 

 

Figure 7. Characteristics plot of different axial depth of circumferential grooves 
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Table 4. Results of different axial depth of circumferential grooves  

Circumferential groove 6_6_139 10_6_139 14_6_139 SW 

Qm,surge(kg/s) 
0.713 0.703 0.701 0.771 

εsurge 
2.3694 2.3647 2.3668 2.3642 

ηpol,des 
0.8185 0.8163 0.8136 0.8204 

Ф 
47.11% 47.85% 48.00% 42.80% 

ΔФ 
8.37% 9.70% 10.11% - 

Δηpol -0.23% -0.50% -0.83% - 

4.2.4.  Different numbers of circumferential grooves. Table 5 lists the specific calculation results of 

different numbers of circumferential grooves as “6_6_139_1” (“6_6_139”), “6_6_139_2” (“6_6_131” 

and “6_6_139”) and “6_6_139_3" (“6_6_131”, “6_6_139” and “6_6_147”). Figure 8 shows 

characteristics plot of different numbers of circumferential grooves. 

Compared with the results of the smooth wall, it can be found from Table 5 and figure 8 that the 

circumferential groove number increased from 1 to 2, stable working range and comprehensive stall 

margin improvement enhanced with static pressure ratio fell and the efficiency decreases obviously; 

when the circumferential groove number increase from 2 to 3, stable working range and comprehensive 

stall margin improvement continue to increase, while the increasing amplitude is reduced, and the static 

pressure continue to decline, efficiency decreases more. 

 

Figure 8. Characteristics plot of different numbers of circumferential grooves 
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Table 5. Results of different numbers of circumferential grooves  

Circumferential groove 6_6_139_1 6_6_139_2 6_6_139_3 SW 

Qm,surge(kg/s) 0.713 0.701 0.699 0.771 

εsurge 
2.3694 2.3468 2.3312 2.3642 

ηpol,des 
0.8185 0.8148 0.8063 0.8204 

Ф 47.11% 48.00% 48.15% 42.80% 

ΔФ 8.37% 9.18% 8.76% - 

Δηpol -0.23% -0.68% -1.72% - 

5.  Concluding Remarks 

Steady three-dimensional Navier-Stokes flow simulations were conducted to investigate the effect of 

circumferential grooved casing treatment in vane diffuser of a centrifugal compressor. The conclusions 

are summarized as follows: 

(1) In the centrifugal compressor, a tip leakage vortex was seen in near-stall condition. Numerical 

simulation of the smooth wall found that in the near-stall condition, the deterioration of air flow in the 

impeller, lead to flow at a huge impact angle into diffuser leading edge, and made flow separation and 

backflow on the suction face of the first diffuser vanes. 

(2)  When the groove is applied at the endwall of the diffuser, suitable position of circumferential groove 

can effectively expand the scope of the stable operation of the compressor, and efficiency has fallen a 

little at the design point. 

(3) The width and depth of circumferential groove was increased, the stable working range and 

comprehensive stall margin improvements increase too, but the efficiency is decreased; the width and 

depth increasingly, stable working range and comprehensive stall margin improvements continue to 

increase, while the increasing amplitude is reduced, and efficiency is decreased more. 

(4) The number of circumferential groove was increased, stable working range and comprehensive stall 

margin improvement enhanced with static pressure ratio fell and the efficiency decreases obviously; 

when the number of circumferential groove increasingly, stable working range and comprehensive stall 

margin improvement continue to increase, while the increasing amplitude is reduced, and the static 

pressure continue to decline, efficiency decreases more. 

(5) The evaluation based on stall margin improvement showed the optimal position for the groove to be 

located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, 

depth and numbers of circumferential grooves that will maximize both surge margin range and 

efficiency. 

Nomenclature 

Q = quantity of flow 

ε= static pressure ratio 

η= efficiency 

Ф= stable working range 

ΔФ= comprehensive improvement of stall margin 

Δη= efficiency improvement 

Subscripts 

m = mass 

surge = surge point condition 

pol = polytropic 

des = design point 
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SW = smooth wall case 

CT  = casing treatment case 

References 

[1] Osborn W M, Lewis G W and Heidelberg L J 1971 Paper No. NASA TN D-6537 

[2] Danner F C T, Kau H P, Muller M M, Schiffer H P and Brignole G A 2009 ASME Paper NO. 

GT2009-59647 

[3] Lin F, Ning F and Liu H 2008 ASME Paper NO. GT2008-51541 

[4] Houghton T and Day I 2009 ASME Paper NO. GT2009-59210 

[5] Muller M W, Schiffer H P, Biela C and Hah C 2008 ASME Paper NO. GT2008-50135 

[6] Chen H, Huang X, Shi K, Fu S, Bennington M A, Morris S C, Ross M, McNulty S and Wadia A 

2010 ASME Paper NO. GT2010-23606 

[7] Iyengar V and Lakshmi S 2005 AIAA 2005-0632 

[8] Flisher F B 1989 SAE transactions 97 1303-1310. 

[9] Hunziker R, Dickmann H P, Emmrich R  2001 Journal of Power and Energy 215 783-791. 

[10] Xu W, Wang T and Gu CG 2011 Science China Technological Sciences 54(9) 2483-2492. 

[11] Zhu J and Chu W 2005 AIAA 809 10-13. 

9th International Conference on Compressors and their Systems IOP Publishing
IOP Conf. Series: Materials Science and Engineering 90 (2015) 012043 doi:10.1088/1757-899X/90/1/012043

10


