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Abstract. An Eulerian circuit of a graph is a circuit that contains all of the edges of the
graph. A graph that has an Eulerian circuit is called an Eulerian graph. The Eulerian recurrent
length of an Eulerian graph G is the maximum of the length of a shortest subcycle of an Eulerian
circuit of G. In other words, if every Eulerian circuit of an Eulerian graph G has a subcycle
of length less than or equal to l, and there is an Eulerian circuit of G that has no subcycle
of length less than l, then the Eulerian recurrent length of G is l. The Eulerian recurrent
length of graph G is abbreviated to the ERL of G, and denoted by ERL(G). In this paper,
the ERL’s of complete bipartite graphs are given. Let m and n be positive even integers with
m ≥ n. It is shown that ERL(Km,n) = 2n− 4 if n = m ≥ 4, and ERL(Km,n) = 2n otherwise.
Furthermore, upper and lower bounds on the ERL’s of complete graphs are given. It is shown
that n− 4 ≤ ERL(Kn) ≤ n− 2 holds for every odd integer n greater than or equal to 7.

1. Introduction
An Eulerian circuit of a graph is a circuit that contains all of the edges of the graph. A graph
that has an Eulerian circuit is called an Eulerian graph. Finding an Eulerian circuit of a graph,
that is to say drawing the graph with a single stroke of the brush, is a fundamental problem
that was studied by Euler in the dawn of graph theory. It is known that a connected graph
is Eulerian if and only if every degree of a vertex of the graph is even, and there is a linear
time algorithm to find an Eulerian circuit of an Eulerian graph. Algorithms to find an Eulerian
circuit are utilized for reconstructing original long base sequences from short fragments of DNA
in the field of bioinformatics[1].

We investigate a problem finding an Eulerian circuit such that the length of a shortest subcycle
of the Eulerian circuit is as long as possible. We call the problem the Eulerian recurrent length
problem (ERLP). The Eulerian recurrent length of an Eulerian graph G is the maximum of the
length of a shortest subcycle of an Eulerian circuit of G. In other words, if every Eulerian circuit
of an Eulerian graph G has a subcycle of length less than or equal to l, and there is an Eulerian
circuit of G that has no subcycle of length less than l, then the Eulerian recurrent length of G
is l. The Eulerian recurrent length of graph G is abbreviated to the ERL of G, and denoted by
ERL(G). For example, the ERL of the graph in figure 1 that consists of 3n vertices is n. We
hope that finding the ERL of a graph is useful for solving some optimization problem.

It has been proved that there is no approximation algorithm with a constant approximation
ratio for the ERLP[2]. In this paper, the ERL’s of complete bipartite graphs are given. Let
m and n be integers with 0 < n ≤ m. It is shown that ERL(Km,n) = 4n − 4 if n = m, and
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Figure 1. A graph whose ERL equals n.

ERL(Km,n) = 4n otherwise. Those results are included in our articles[3, 4] written in Japanese.
Furthermore, an upper and lower bound on the ERL’s of complete graphs are given. It is shown
that n − 4 ≤ ERL(Kn) ≤ n − 2 holds for every odd integer n greater than or equal to 7. The
lower bound slightly improves the previous one[3]. As shown above, the ERL’s of complete
bipartite graphs and complete graphs are close to trivial upper bounds.

In the next section, we shall define several notions necessary for the arguments that follow.
In section 3, we shall give the ERL’s of complete bipartite graphs. In section 4, we shall give
an upper and lower bound on the ERL’s of complete graphs. In the last section, we shall give
conclusions and remarks about a further challenge to determine the ERL’s of complete graphs.

2. Preliminaries
A walk is an alternating sequence of vertices and edges v0 → e1 → v1 → · · · → vk−1 → ek → vk,
beginning and ending with a vertex, such that, for each i ∈ {1, 2, . . . , k}, vi−1 and vi are
both end vertices of ei, and vi−1 is different from vi if ei is not a loop. Every graph that
appears in this paper is a simple undirected graph. We may, therefore, express a walk W with
only its vertices as v0 → v1 → · · · → vm, where v0 is the initial vertex and vm the terminal
vertex. The walk W is said to be a v0-vm walk, or a walk from v0 to vm. A walk is said
to be closed if the initial and final vertex are identical. If a walk is closed, then the walk is
expressed as W = v0 → v1 → · · · → vm → v0. In this case, the walk W can be written as
vi → vi+1 → · · · → vm → v0 → · · · vi for each i = 0, 1, . . . ,m, since each vertex in the walk can
be regarded as the initial and end vertex. The length of a walk is the number of edges in the
walk, even if the walk is closed.

A trail is a walk such that all its edges are distinct. A circuit is a closed trail. A path is a
trail such that all its vertices are distinct except that its initial and final vertex are identical.
A cycle is a closed path that has at least one edge. Let G be a graph, and W1 and W2 walks
in G. If W1 is a subsequence of W2, then W1 is said to be a subwalk of W2. If C is a cycle
and a subwalk of W , then C is said to be a subcycle of W . The terms, subtrail, subcircuit, and
subpath, are also defined in the same manner. We may regard a path of a graph as the subgraph
induced from the vertices in the path.

An Eulerian circuit of a graph G is a circuit of G that contains all of the edges of G. A graph
is Eulerian if it has an Eulerian circuit. It is a well-known fact that a graph is Eulerian if and
only if the degree of each vertex of the graph is even.

3. The Eulerian recurrent length of complete bipartite graphs
The ERL’s of complete bipartite graphs are given in the following theorem.

Theorem 1 Let m and n be positive even integers with m ≥ n. If m = n ≥ 4, then
ERL(Km,n) = 2n− 4 holds. Otherwise, ERL(Km,n) = 2n holds.
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Proof. It is clear that ERL(K2,2) = 4 holds. The proof immediately follows from this fact
and two lemmas below. □

The following lemma and the proof are both presented in [3].

Lemma 1 Let n be an even integer greater than or equal to 4. Then, ERL(Kn,n) = 2n − 4
holds.

Proof. First, we construct an Eulerian circuit T of Kn,n such that the length of a shortest
subcycle of T is at least 2n−4. Without loss of generality, we may assume that the vertex-set of
Kn,n is {0, 1, . . . , 2n−1} and that all of the edges of Kn,n join a vertex in U = {0, 2, 4, . . . , 2n−2}
and a vertex in V = {1, 3, 5, . . . , 2n−1}. For each even integer k = 0, 2, . . . , n−2, let Hk denote
the Hamilton path of Kn,n defined as

Hk = 0 → (2k + 1) mod 2n → 2 → (2k + 3) mod 2n → · · · → 2n− 2

→ (2k + 2n− 1) mod 2n .

The edge-set of Kn,n is partitioned into n/2 Hamilton cycles C0, C2, . . . , and Cn−2, where each
Ck is expressed in the form of Hk → 0. It follows easily from the definition of Hk’s that the
Hamilton cycles C0, C2, . . . , and Cn−2 are edge-disjoint each other. Therefore, the closed walk

T = H0 → H2 → H4 → · · · → Hn−2 → 0

is an Eulerian circuit.
Since T is a concatenation of Hamilton cycles, every shortest subcycle of T must be contained

in a trail Hk → H(k+2) mod n for some k ∈ {0, 2, . . . , n− 2}. We assume that k is an even integer
with 0 ≤ k ≤ n− 2, and shall show that the length of any subcircuit τ of Hk → H(k+2) mod n is
not less than 2n− 4. It follows easily from the definition of Hk’s that if i is an even integer with
0 ≤ i ≤ n − 1, then the length of the subcircuit of Hk → H(k+2) mod n from the vertex i in Hk

to the vertex i in H(k+2) mod n is equal to 2n. We may, therefore, assume that there is an odd
integer j such that τ is the subcircuit from j in Hk to j in H(k+2) mod n.

Let x and y denote the integers defined by

Hk = 0 → · · · → x → j → · · · → (2k + 2n− 1) mod 2n

and
H(k+2) mod n = 0 → · · · → y → j → · · · → (2k + 2n+ 3) mod 2n .

Then, it follows immediately from the definition of Hk’s that x = (j − 2k − 1) mod 2n
and y = (j − 2k − 5) mod 2n. Therefore, the length of the latter part of Hk from j is
l = 2n− ((j − 2k− 1) mod 2n)− 2, and the length of the former part of H(k+2) mod n to j is r =
((j−2k−5) mod 2n)+1. It follows from n ≥ 4 that if (j−2k−1) mod 2n > (j−2k−5) mod 2n
then (j − 2k − 1) mod 2n = ((j − 2k − 5) mod 2n) + 4. We, therefore, have l + r + 1 ≥ 2n− 4.
Thus, it is concluded that the length of a shortest subcycle of T is not less than 2n− 4.

Next, we assume that there is an Eulerian circuit T of Kn,n that has no subcycle of length
less than or equal to 2n − 4, and shall derive a contradiction. Since the order of Kn,n is 2n, T
has a subcycle of length at most 2n. Suppose that T has a subcycle

S = s1 → s2 → · · · → s2n → s1

of length 2n. Since any bipartite graph have no cycles of odd length, E = {s2, s4, . . . , s2n} and
O = {s1, s3, . . . , s2n−1} are the vertex classes of Kn,n, in other words, either E = U and O = V
or E = V and O = U holds. Let x1 and x2 denote the vertices defined by

T = · · · → S → x1 → x2 → · · · .

It follows from the definition that x1 ∈ E and x2 ∈ O. Any subtrail of T must satisfy the
following two conditions.
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Table 1. Violations of the conditions when x1 ̸= s4

z Walk S → z violates . . .

s2, s2n Condition 1
s6, s8, . . . , s2n−2 Condition 2

Table 2. Violations of the conditions when x1 = s4

z Walk S → s4 → z violates . . .

s1, s3, s5 Condition 1
s7, s9, . . . , s2n−1 Condition 2

Table 3. Violations of the conditions when x1 ̸= s2n

z Walk S → z violates . . .

s2, s2n−2 Condition 1
s4, s6, . . . , s2n−4 Condition 2

Condition 1 No edge appears more than two times in the subtrail.

Condition 2 There is no subcycle of the subtrail of length less than or equal to 2n− 4.

From table 1, we have x1 = s4. Furthermore, from table tab02, we conclude that S → x1 → x2
violates Condition 1 or Condition 2 for any x1 and x2.

Therefore, we may assume that any subtrail of T satisfies Condition 3 along with Condition 1
and 2 until the end of this proof.

Condition 3 There is no subcycle of the subtrail of length exactly equal to 2n.

Now, suppose that T has a subcycle

S = s1 → s2 → · · · → s2n−2 → s1

of length 2n − 2. We may express the vertex classes of Kn,n as E = {s2, s4, . . . , s2n} and
O = {s1, s3, . . . , s2n−1}, where s2n−1 and s2n denote the vertices that S does not include. Let
x1, x2, x3, and x4 denote the vertices defined by

T = · · · → S → x1 → x2 → x3 → x4 → · · · .

By definition, we have {x1, x3} ⊆ E and {x2, x4} ⊆ O. Then, x1 = s2n follows from table 3.
Then, x2 ∈ {s3, s2n−1} follows from table 4. Since x2 ̸= s3 follows from table 5, we have
x2 = s2n−1. Furthermore, x3 = s4 follows from table 6. From table 7, we conclude that
S → x1 → x2 → x3 → x4 violates Condition 1, 2 or 3 for any x4, a contradiction derived.

We have thus proved the theorem.
□
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Table 4. Violations of the conditions when x1 = s2n and x2 ̸∈ {s3, s2n−1}

z Walk S → s2n → z violates . . .

s1 Condition 1
s5, s7, . . . , s2n−3 Condition 2

Table 5. Violations of the conditions when x1 = s2n and x2 = s3

z Walk S → s2n → s3 → z violates . . .

s2, s4, s2n Condition 1
s6, s8, . . . , s2n−2 Condition 2

Table 6. Violations of the conditions when x1 = s2n, x2 = s2n−1, and x3 ̸= s4

z Walk S → s2n → s2n−1 → z violates . . .

s2n Condition 1
s6, s8, . . . , s2n−2 Condition 2
s2 Condition 3

Table 7. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → s2n → s2n−1 → s4 → z violates . . .

s3, s5, s2n−1 Condition 1
s1 Condition 2
s7, s9, . . . , s2n−3 Condition 2

The following lemma and proof are both presented in our article[4]. The proof in the previous
article, however, includes many errors.

Lemma 2 Let m and n be positive integers with n < m. Then, ERL(K2m,2n) = 4n holds.

Proof. Let A = {(0, x) | 0 ≤ x ≤ 2n − 1} and B = {(1, x) | 0 ≤ x ≤ 2m − 1}
be the vertex classes of the complete bipartite graph K2m,2n. Let k denote positive integer
gcd(m,n) = gcd(2m, 2n)/2. For each j ∈ {0, 1, . . . , k − 1}, we define trail Hj and circuit Cj of
G as follows:

Hj = (0, 0) → (1, 2j) → (0, 1) → (1, (2j + 1) mod 2m) → · · · →
(0, i mod 2n) → (1, (2j + i) mod 2m) → · · · → (0, 2n− 1) → (1, (2j − 1) mod 2m),

Cj = Hj → (0, 0).
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That is to say, (0, 0) is the initial vertex of Hj and Cj , and for every i ∈ {0, 1, 2, . . . , 2n − 1},
(0, i mod 2n) and (1, (2j + i) mod 2m) are 2i and 2i + 1 edges distant from (0, 0) on Cj ,
respectively. Furthermore, the length of Cj is the double of the minimum of positive integer i
that satisfies both

i ≡ 0 (mod 2n) and 2j + i ≡ 2j (mod 2m) . (1)

Condition (1) is equivalent to the following:

i is a multiple of 2k, i/(2k) ≡ 0 (mod n/k), and i/(2k) ≡ 0 (mod m/k) ,

and, by the Chinese remainder theorem, there is a unique integer i that satisfies the condition
above and 0 < i/(2k) ≤ nm/k2. Since i = 2nm/k satisfies condition (1), the length of Cj is
4nm/k for every j.

For any integers i and j with

0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1, and i ̸= j, (2)

there is no edge e such that e ∈ E(Ci) ∩ E(Cj), where E(Ci) and E(Cj) denote the set of all
the edges on Ci and Cj , respectively. It is for the reason that a contradiction follows from the
existence of such an edge e as follows. Assume that there is such an edge e. Then, there must
be integers p and q such that one of the following three conditions holds:

(a) (0, p mod 2n) = (0, q mod 2n) and (1, (2i+ p) mod 2m) = (1, (2j + q) mod 2m).

(b) (0, p mod 2n) = (0, q mod 2n) and (1, (2i+ p) mod 2m) = (1, (2j + q − 1) mod 2m).

(c) (0, p mod 2n) = (0, q mod 2n) and (1, (2i+ p− 1) mod 2m) = (1, (2j + q − 1) mod 2m).

It is impossible that condition (b) holds since p mod 2n = q mod 2n implies p ≡ q (mod 2),
and (2i + p) mod 2m = (2j + q − 1) mod 2m implies p ̸≡ q (mod 2). It is also impossible that
condition (a) or (b) holds. If condition (a) or (b) holds, then both p − q ≡ 0 (mod 2k) and
i− j ≡ 0 (mod k) hold. Then, i− j ≡ 0 (mod k) contradicts condition (2). Hence, the circuit

T = H0 → H1 → · · · → Hk−1 → 0

obtained by connecting the circuits C0, C1, . . . , Ck−1 in this order is an Eulerian circuit of
K2m,2n.

We now can readily verify the following two facts. Each vertex in A and B appears at regular
4n and 4m edges intervals, respectively, on Cj for each j ∈ {0, 1, 2, . . . , k − 1}. Furthermore, if
a vertex v appears at position p in trail Hj and q in trail H(j+1) mod k, then p and q are at least
4(m− 1) ≥ 4n edges distant each other. Thus, we conclude the proof. □

4. The Eulerian recurrent lengths of complete graphs
We give an upper and lower bound on the ERL of complete graphs Kn that consists of odd
number of vertices in this section.

4.1. An upper bound on the ERL’s of complete graphs
We give an upper bound on the ERL’s of complete graphs Kn for odd integers n greater than
or equal to 5 as follows:

ERL(Kn) ≤ n− 2 ,

which immediately follows from the following theorem. The theorem and the proof are both
presented in [3].
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Table 8. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → z violates . . .

s1 Condition 4
s2, sn Condition 5
s4, s5, . . . , sn−1 Condition 6

Table 9. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → s3 → z violates . . .

s3 Condition 4
s1, s2, s4 Condition 5
s5, s6, . . . , sn Condition 6

Theorem 2 Let n be an odd integer with n ≥ 5. Then, every Eulerian circuit of Kn has a
subcycle of length at most n− 2.

Proof. The strategy for the proof is similar to that of Theorem 1. Let T be an Eulerian circuit
of Kn. We derive a contradiction from the assumption that the length of a shortest subcycle
of T is greater than n− 2, proving that T always has a subcycle of length at most n− 2. Any
subtrail S of T always satisfies the following three conditions.

Condition 4 S has no loops, where a loop is an edge joining a vertex to itself.

Condition 5 For any pair of vertices (v, w), S does not have two or more edges joining v and
w

Condition 6 S has no subcycles of length at most n− 2.

Since the order of Kn is n, T has a subcycle S of length at most n. First, suppose that T
has has a subcycle

S = s1 → s2 → · · · → sn → s1

of length n. Let x1 and x2 be the vertices such that

T = · · · → S → x1 → x2 → · · · .

Then, x1 = s3 follows from table 8. Furthermore, it follows from table 9 that S → x1 → x2
violates Condition 4, Condition 5 or Condition 6 for any x2. Thus, we obtain a contradiction.

Next, suppose that T has a subcycle

S = s1 → s2 → · · · → sn−1 → s1

of length exactly n− 1. Let sn denote the unique vertex not contained in S, and x1, x2, and x3
be the vertices such that

T = · · · → S → x1 → x2 → x3 → · · · .

Then, we may assume that any subtrail S of T satisfies Condition 7 along with Condition 4, 5
and 6 until the end of this proof.
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Table 10. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → z violates . . .

s1 Condition 4
s2, sn−1 Condition 5
s3, s4, . . . , sn−2 Condition 6

Table 11. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → sn → z violates . . .

sn Condition 4
s1 Condition 5
s4, s5, . . . , sn−1 Condition 6
s2 Condition 7

Table 12. Violations of the conditions x1 = s2n, x2 = s2n−1, and x3 = s4

z Walk S → sn → s3 → z violates . . .

s3 Condition 4
s2, s4, sn Condition 5
s1 Condition 6
s5, s6, . . . , sn−1 Condition 6

Condition 7 There is no subcycle of S of length n.

Then, x1 = sn follows from table 10. Furthermore, x2 = s3 follows from table 11. From table 12,
we conclude that S → x1 → x2 → x3 violates Condition 4, 5, 6 or 7 for any x1, x2, and x3.

We have thus proved the theorem.
□

4.2. A lower bound on the ERL’s of complete graphs
We give a lower bound of the ERL of complete graphs Kn for odd integers n greater than or
equal to 7:

ERL(Kn) ≥ n− 4 ,

which immediately follows from the following theorem stated in our recent work[5]. We obtain
the theorem by slightly improving our previous result in [3].

Theorem 3 Let n be an odd integer with n ≥ 7. Then, there is an Eulerian circuit C of Kn

such that the length of any subcycle of C is greater than or equal to n− 4.

Proof. Assume that the vertex set of complete graph Kn that consists of n vertices is
{0, 1, 2, . . . , n−1}. Let Hk denote the Hamiltonian path n−1 → v0(k) → v1(k) → · · · → vn−2(k)
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of Kn for each k ∈ {0, 1, 2, . . . , n− 2}, where vi(k) is defined recursively as follows:

vi(k) =


k if i = 0,

(vi−1(k) + i) mod (n− 1) if i > 0 and i is odd,

(vi−1(k)− i) mod (n− 1) otherwise.

It is known that every complete graph Kn consisting of odd number k of vertices is decomposed
into (n− 1)/2 Hamiltonian cycles H0, H1, . . . , H(n−3)/2[6]. Figure 2 depicts H0, H1, and H2 for
complete graph K9 consisting of 9 vertices.

H0
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1
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3

4
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H2
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0

1

2

3

4

5

6

7

Figure 2. H0 → n− 1, H1 → n− 1, and H2 → n− 1 for K9.

Let the Eulerian circuit Cn of Kn be defined as

Cn =


H0 → H2 → · · · → H(n−5)/2 → H(n−3)/2

→ H(n−3)/2−2 → · · · → H1 → n− 1
if n ≡ 1 (mod 4),

H0 → H2 → · · · → H(n−3)/2 → H(n−5)/2

→ H(n−5)/2−2 → · · · → H1 → n− 1
if n ≡ 3 (mod 4).

Then, the following hold.

vi(k) = vj(k+1) implies n−2 ≤ n+ j− i ≤ n+2 for each k ∈ {0, 1, . . . , (n−5)/2} , (3)

vi(k) = vj(k−1) implies n−2 ≤ n+ j− i ≤ n+2 for each k ∈ {1, 2, . . . , (n−3)/2} , (4)

vi(k) = vj(k+2) implies n−4 ≤ n+ j− i ≤ n+4 for each k ∈ {0, 1, . . . , (n−7)/2} , (5)

and

vi(k) = vj(k−2) implies n−4 ≤ n+ j− i ≤ n+4 for each k ∈ {2, 3, . . . , (n−3)/2} . (6)

Thus, it follows from (3), (4), (5), and (6) that the length of any subcycle of Cn is greater than
or equal to n− 4 for any integer n greater than or equal to 7. Thus, we conclude the proof. □

5. Concluding remarks
We have given the exact values of the Eulerian recurrent lengths of complete bipartite graphs
in Theorem 1 by gathering our results in two articles. We have then described the proof of
those values. We also have given an upper and lower bound on the Eulerian recurrent lengths
of complete graphs in Theorems 2 and 3, and have described the proofs. We have obtained the
lower bound by slightly improving our previous result.
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We have already proved that ERL(Kn) ≤ n − 3 holds for every odd integer n greater
than or equal to 7, in our recent article[5]. It has been verified by computer experiments
that ERL(Kn) = n − 3 holds for each integer n ∈ {7, 9, 11, 13}. I currently conjecture that
ERL(Kn) = n − 4 holds for every odd integer n greater than or equal to 15. If the conjecture
holds, then the Eulerian circuit described in the proof of Theorem 3 is an optimal solution for
the ERLP constrained to input only complete graphs that consists of odd number n of vertices
with n ≥ 15.
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