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Abstract. FOCal Underdetermined System Solver (FOCUSS) is a useful method through 

reweighted 
2

 minimization for sparse recovery. In this paper, we introduce an improved 

FOCUSS by enhancing sparsity with two reweighted 
2

 minimization. The reweighted 

FOCUSS method has higher mission success rate and better accuracy than FOCUSS. The 

simulation results illustrate the advantage of reweighted FOCUSS. 

1.  Introduction 

The problems of finding sparse solutions to underdetermined system have been the hot spot because of 

the increasing applications in many fields, such as signal processing, image processing, information 

encoding, etc. This problem can be modeled as: 

  y Ax n  (1) 

where 1( , , )T m

my y y R  is an observable vector, 1( , , )T n

nx x  x R  is an unknown input 

vector, A  is a known m n  basis matrix, and n  represents noise vector. 

The main objective is to recover x  from (1) such that x  is sparse, m n , and A  satisfies some 

property (e.g. RIP [1]). 

In the noise-free setup, it has been asserted that exact reconstruction of x  can be guaranteed by 

solving a convex problem [1]:  

1
min s.t. =x x y Ax . 

For (1), the solution of approximate reconstruction can be expressed by another convex problem 

with Lagrange form as  

12

xAxymin
2

x 
 . 

However, the computational burden of convex optimization is very high, and thus unsuitable to 

large scale problems and practice applications. At the same time, many substitutive algorithms have 

been proposed for this problem, such as greedy algorithms (e.g., MP, OMP [2], CoSaMP [3], etc.), 

FOCUSS algorithm(s) [4]. The performance of greedy algorithms can only be guaranteed only if A  

satisfies rigorous RIP condition and usually a little worse than others; FOCUSS algorithms are 

advantageous in terms of computational complexity and loose requirement on A . 

In the correspondence, FOCUSS algorithms are worth improving. As mentioned that FOCUSS is 

an iterative procedure of reweighted 
2

 minimization, the main contribution of this paper is to 

improve FOCUSS with another iterative reweighted procedure. 
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2.  Drawback analysis of FOCUSS 

 

Table 1. FOCUSS algorithms 
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The basic form and regularized form of FOCUSS algorithm are described [4] as Table 1. In Table 

1,    is Lagrange parameter [5] and 0 1p   is pre-set norm-factor. FOCUSS algorithm(s) can be 

considered a reweighted 2  minimization because in each iteration, it is equivalent to find the 

optimum solutions to (2) [4,5]. 

 

2 2

2 2
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1 1,
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 (2) 

where   is noise threshold, and 1

k

W W . 

The reweighted method of FOCUSS is accordant to idea of enhancing sparsity by reweighted 
1
 

minimization [6], which mentions that large entries in 
iw  force the solution x  to concentrate on the 

indices where 
iw  is small in order to approach 

0
 minimization further more. 

kx  in Table 1 is equivalent to  
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 (3) 

From (3) we can find that 
kx , the approximate solution of x  in k -th iteration depends on the 

constant entries H
A y . Let  1, , nA a a , T  represents the indices set of non-zero entries, T  

represents the indices set of zero entries. Suppose tT  is corresponding to the index of the smallest 

non-zero entry in x , ,
ˆ

k tx , the estimation of 
tx  is desponded on H

ta y . Due to   

 H H H

t t t a y a Ax a n , (4) 

if H

ta Ax  and H

ta n  have the opposite phase, the power of signal in H

ta y  would be crippled even 

counteracted. So with some possibility, there exists dT  satisfying 
, ,

ˆ ˆ
k t k dx x . Under this situation, 

tw ，which should be smaller than 
dw , is bigger than 

dw . This situation will never be improved 

through iterations, and thus leads to the failure of FOCUSS. 

3.  Reweighted FOCUSS algorithm 

In order to overcome the drawback in Section 2, we design the reweighted FOCUSS which utilize 

another different reweighted 
2

 minimization. Similar to [6] and [7], the important thing of 

reweighted FOCUSS is assigning bigger weights to those elements of x  which are more likely to be 

zero. Reweighted FOCUSS algorithm is described in Table 2.  
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In reweighted FOCUSS algorithm, FOCUSS algorithms can be considered the first step of 

reweighted 
2

 minimization and the following procedures can be considered the second step which is 

equivalent to find the optimum solutions to the following: 

 

Table 2. Reweighted FOCUSS algorithm 

 

Algorithm reweighted FOCUSS: 

1. Get the initial estimation of 
0x  of x  through FOCUSS algorithms; 

2. Find the index set {1,2, , }nK  which corresponds to the largest 
log( / )

m
C

n m
  elements 

of 
kx  in amplitudes [8], where C  is a constant with the numerical value given in [1]; 

3. Set diagonal matrix   with diagonal elements satisfying  
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and calculate 
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4. Terminate on convergence or when k  attains a specified maximum number of iterations 

maxk ; otherwise, increase k  and go to step 2. 
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The method choosing W  in (5) is proved to be efficient to recover x  from (1) in [1]. However, 

differently from [1] which needs solving convex problem, this paper employs iterated method to solve 

the reweighted 
2

 minimization approximately, which deduces the computational burden greatly. 

Through re-assigning the weighted coefficient, if some indices of small nonzero entries in x  are 

undetected or some indices of zero entries are false-drop under FOCUSS algorithms just like the 

analysis in Section 2, they can be corrected. 

4.  Simulation results 

This section shows the advantages of recovery ability of reweighted FOCUSS algorithms with 

numerical simulations, compared to FOCUSS algorithms. In a Monte Carlo simulation, 1000 trials are 

carried out independently. In each trial, A  is chosen as Gaussian random matrix, entries of which are 

independently, identically and normally distributed; x  is a s -sparse vector which is input randomly, 

with normalizing power, i.e., 
2

1i ix  ; entries of n  are independently and identically Gaussian 

distributed with mean zero and variance 2 ; The indices of nonzero coordinate set T  are chosen 

randomly from a discrete uniform distribution of [1,n]. Then SNR of system can be represented as 
21/ . The algorithm in simulations is considered to be successful if all nonzero-locations of x  are 

found exactly; otherwise the algorithm is considered to be failed.  

The algorithms mentioned in the simulation are: FOCUSS, regularized FOCUSS, reweighted 

FOCUSS and reweighted regularized FOCUSS. Figure1 shows the statistical results of mission 

success rate, and Figure 2 shows the statistical root-mean-square error (RMSE) curve of signal 

amplitude recovery when algorithms can find the nonzero-coordinate T  correctly under different SNR 

scenes. It can be seen from Figure 1 and Figure 2 that reweighted FOCUSS works more robustly and 

International Conference on Applied Sciences (ICAS2013) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 57 (2014) 012008 doi:10.1088/1757-899X/57/1/012008

3



 

 

 

 

 

 

more accurately than FOCUSS, and so does reweighted regularized FOCUSS better than regularized 

FOCUSS. In Figure 1 and Figure 2, 32m  , 128n  , 3s  , 0.5p  . 

 
Figure 1. Mission success rate of algorithms in finding the support set correctly. 

 

 
Figure 2. RMSE of signal amplitude recovery. 

 

5.  Conclusion 

 

In this paper, for solving sparse-recovery problems, we have analyzed the major drawback of 

traditional FOCUSS algorithms, and developed the reweighted FOCUSS to approximate sparse 

solutions. We give the experimental evidence that reweighted FOCUSS can reconstruct the sparse 

inputs more robustly and accurately than untreated FOCUSS. This reweighted method has never 

conflict with sparse-recovery algorithms and can be regarded as the post-processing of them, and is 

easier to apply than reweighted 
1
 minimization. 
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