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Abstract.  A posteriori error estimation for the nodeless variable finite element method is 
presented.  A nodeless variable finite element method using flux-based formulation is 
developed and combined with an adaptive meshing technique to analyze two-dimensional 
thermal-structural problems.  The continuous flux and stresses are determined by using the 
flux-based formulation while the standard linear element interpolation functions are used to 
determine the discontinuous flux and stresses.  To measure the global error, the L2 norm error 
is selected to find the root-mean-square error over the entire domain.  The finite element 
formulation and its detailed finite element matrices are presented.  Accuracy of the estimated 
error is measured by the percentage relative error.  An adaptive meshing technique, that can 
generate meshes corresponding to solution behaviors automatically, is implemented to further 
improve the solution accuracy.  Several examples are presented to evaluate the performance 
and accuracy of the combined method. 

1. Introduction 
The finite element method has been widely used to analyze many engineering problems [1,2].  Both 
triangular and tetrahedral elements are frequently used due to the simplicity for constructing meshes 
for complex geometry problems but the solution accuracy is normally low.  Since the thermal stresses 
are sensitive to the predicted thermal gradients, a more accurate thermal analysis is required to predict 
temperature distribution.  The solution accuracy may be improved using the h-method of adaptation 
where the mesh is globally or locally refined or coarsened [3,4]. 
 The objective of this paper is to develop a nodeless variable finite element method to improve the 
predicted solution of the two-dimensional Poisson’s equation.  The nodeless variable finite elements 
use the quadratic interpolation functions to express the solution distribution over the element without 
requiring additional actual nodes.  In addition, the paper introduces and applies the flux-based 
formulation to derive the finite element matrices for such nodeless variable element. 
 An adaptive unstructured meshing technique [4,5] is implemented to improve the solution 
accuracy.  The efficiency of the combined nodeless variable finite element method using flux-based 
formulation and the adaptive meshing technique is evaluated by several examples with exact solutions. 
 
2. Nodeless variable finite element method 
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2.1. Governing equations and boundary conditions 
The Poisson’s equation for two-dimensional domain in x-y coordinate system as shown in figure 1 can 
be written in the conservation form as, 
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where ( )yxf ,  denotes the source function.  The flux vector components { }E  and { }F  contain the 
heat flux components for thermal analysis or the stress components for structural analysis given by, 
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where U is the primary variable and c is the material property that depends on types of problem.  The 
Poisson’s equation shown in equation (1) is to be solved together with appropriate boundary 
conditions that may consist of, 
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where d and U∞ are constants and q is the secondary variable. 
 
2.2. Nodeless variable flux-based finite element formulation 
The flux-based formulation [6] is implemented to derive the corresponding finite element equations 
for a nodeless variable element.  For the triangular nodeless variable element, the distribution of the 
primary variable over the element is assumed in the form, 
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where ( ) yxN ,  consists of the element interpolation functions, and { }U  is the vector of the 
unknown primary variables and the nodeless variables.  The nodal primary variables are U1 through 
U3, while U4 through U6 are the nodeless variables.  The element interpolation functions, N1, N2, N3 are 
identical to the element interpolation functions L1, L2, L3 used for the standard three-node triangular 
element.  The nodeless variable interpolation functions implemented in this paper are, 
 324 LLN =  ; 315 LLN =  ; 216 LLN =  (5) 
 Each nodeless variable interpolation function varies quadratically along one edge and vanishes 
along the other edges.  To derive the finite element matrices by means of the flux-based formulation, 
the method of weighted residuals is first applied to equation (1). The Gauss’s theorem is then applied 
to the flux derivative terms to yield, 
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where Ω is the element domain and S is the element boundary. 
 In the flux-based formulation, the element flux distributions are computed from the actual nodal 
fluxes as, 
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where  N  are the standard linear element interpolation functions, i.e.,  321 LLL .  The { }nE  

and { }nF  are the vectors of the actual nodal fluxes. 

7th International Conference on Cooling & Heating Technologies (ICCHT 2014) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 88 (2015) 012007 doi:10.1088/1757-899X/88/1/012007

2



 Determination of nodal fluxes depends on the types of problem considered.  For structural analysis 
problem, the stress components xyyx τσσ ,,  are related to the strain components by Hook’s law.   The 
compact form of equation (6) for structural analysis can be written as, 
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and { }sT  is the boundary tractions vector which can be written as, 

 { } [ ]{ }ss TNT =  (10) 

where [ ]N  and { }sT  are interpolation matrix and boundary tractions vector, respectively.  The 
interpolation functions in equation (10) needed for integration along a typical element side S are, 
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where L is the length of element edge and x is the local coordinate along the edge starting from node 1 
as shown in figure 2.  Appropriate boundary conditions of the structural analysis problem are then 
applied.  Two types of the boundary conditions considered herein are the specified displacements and 
boundary tractions, as given by equations (3a) and (3b), respectively. 
 
 
 
 
 
 
 
 

Figure 1. Two-dimensional domain and 
boundary conditions for Poisson’s problem. 
 

 
 
 
 
 
 
 

Figure 2. Discretization of boundary tractions 
into nodal quantities. 
 

3. A posteriori error estimation 
3.1. Flux-based formulation for nodal fluxes 
Figure 3(a) shows the typical flux (heat flux or 
stress) distributions computed by using the 
conventional finite element formulation for 
standard triangles.  Figure 3(b) shows the 
continuous flux distributions for the same 
triangular mesh by using the flux-based formu-
lation. 

  
 a) Discontinuous b) Continuous 

Figure 3. Flux distributions. 
 

 Errors of fluxes are determined from the difference between the computed continuous and 
discontinuous fluxes.  The errors of flux gradients are defined by 
 STFB
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where FBg  are the flux-based element gradients and STg  are the standard element gradients. 
 The method of weighted residuals is applied to equation (12) and substituting the element flux 
distributions from equation (7) to yield, 
 [ ]{ } [ ]{ }UGgM FB =  (13) 
where [ ]M  is the mass matrix and { }FBg  is the vector of the flux-based nodal fluxes. 
 
3.2. Error estimator 
To measure the global error, the L2 norm error is selected to find the root-mean-square error over the 
entire domain [7].  From equation (12), the square of the L2 norm error for the gradients is 
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 By applying the same concept onto the errors of gradients, the finite element equations for the 
finite element error square are, 
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 The finite element global error for gradients is computed from 
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where dA  is the total domain area.  The square of exact L2 norm error for gradients is 
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where EXg  are exact element gradients, 
2

2L
FB
ge  and 

2

2L
ST
ge  are the square of error for flux-based 

element and standard element, respectively.  The exact global error for both flux-based element and 
standard element are applied with the same procedure.  From the concept of measuring discretization 
error in the elastic problem, the Z2-error estimate [8], the percentage relative error is defined by, 
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where 
2Le is the error in the L2 norm and 

2Lu is L2 norm of the solution.  The mesh adaptation is 
terminated when the value of η is less than 5% which is reasonable for engineering applications [9,10]. 
 
4. Numerical examples 
To evaluate the performance and accuracy of the combined adaptive nodeless variable finite element 
method together with the flux-based formulation and the proposed error estimation method, two 
example problems are studied and presented.  These problems are: (1) a square domain with source 
function and (2) an L-shaped plate under uniform loading. 
4.1. Square domain with source function 
A unit square domain with the specified boundary conditions is shown in figure 4.  The specified 
source function over the plate [11] is given by,  

 ( ) ( )( ) ( )( ) ( ) ( ) ( ), 14 1 1 2 4 1 1 2 2 1 2 7 1 1f x y x x y y y x x y x x y y = − − − − − − + + + − + −   (19) 

 The exact solution for the primary variable distribution is, 
 ( ) ( ) ( )( )yxyyxxyxU 72111, ++−−=  (20) 
 Figure 5 shows the three structure finite element mesh models with 32, 128 and 512 nodeless 
variable finite elements, respectively.  The first T3NL–M1, the second T3NL–M2 and the third 
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T3NL–M3 meshes consist of 25, 81 and 289 nodes, respectively.  The figure also shows the predicted 
solution contours obtained from these mesh models. 
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Figure 4. Problem statement of a unit square 

domain with specified source function. 

     
 a)  T3NL–M1 b)  T3NL–M2 

   
 c)  T3NL–M3 

Figure 5. Three structured mesh models and 
their solution contours. 

 The comparisons between the exact and three nodeless variable flux-based finite element solutions 
along the edge x = 0.5 are shown in figure 6.  The L2 norm and percentage relative errors of the exact 
global error using the flux-based and standard elements together with the approximate global error are 
presented in Table 1.  The table shows that the computed global errors for the three finite element 
mesh models are in the same trend as the exact errors.  These global errors can be used for measuring 
the solution accuracy obtained from the finite element mesh models with different discretization.

 
Figure 6. Comparison between the exact and 
three finite element solutions along the edge x 

= 0.5. 

Table 1.  Quantitative comparisons of global 
errors for a unit square domain with specified 
source function. 

 
4.2. L-shaped plate under uniform loading 
This test case is a L-shaped domain [8] subjected to a tensile load of 1=σ  as shown in figure 7.  The 
plane stress condition is assumed with the Poisson’s ratio of 0.3 and Young’s modulus E = 100,000. 
 

 
Figure 7. Problem statement of an L-shaped 

plate under uniform loading. 

    
 Mesh S1 Mesh S2 Mesh S3 Mesh S4 
 

    
 Mesh U1 Mesh U2 Mesh U3 

Figure 8. Meshes used in analysis of  
L-shaped plate under uniform loading. 
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 Figure 8 shows the four uniform meshes (S1 to S4), an initial unstructured mesh (U1) and two 
adaptive meshes (U2 and U3) used in the analysis.  The number of nodes in different meshes and the 
computed percentage errors of their solutions are tabulated in Table 2.  The table also highlights 
performance of the adaptive meshing technique that the number of nodes are almost constant (228 and 
257 nodes in mesh U2 and U3, respectively) during the adaptive process, whereas the final uniform 
mesh contains five times greater of the number of nodes (1,281 nodes in mesh S4) at the same error 
level.  The comparison for the solution convergence rates between the uniform refinement meshes and 
the adaptive meshes are presented in figure 9 where N denotes the number of nodes.  The solution 
convergence rates of the uniformly refine meshes is 0.36 as compared to 2.59 for the adaptive meshes.  
The convergence rates of the uniform refinement meshes are relatively low due to the solution 
singularity at the center corner.  

Table 2.  Quantitative comparisons of global 
errors for analysis of L-shaped plate under 
uniform loading 
 

Element Number of nodes FEη  

Mesh S1 21 12.08% 

Mesh S2 96 6.35% 

Mesh S3 341 4.07% 

Mesh S4 1,281 2.67% 

Mesh U1 166 6.21% 

Mesh U2 228 3.53% 

Mesh U3 257 2.35% 

 

 
Figure 9. Comparison of solution 

convergences between the uniform refinement 
and adaptive meshes.

 
5. Conclusions 
The nodeless variable finite element method using flux-based formulation was developed to analyze 
two-dimensional thermal-structural problems.  The flux-based formulation was developed and applied 
to the nodeless variable finite element in order to reduce the computational complexity as compared to 
the conventional finite element method.  An adaptive meshing technique was implemented to further 
improve the solution accuracy.  The performance of the combined procedure was evaluated by using 
two problems.  These problems demonstrate that the combined nodeless variable finite element 
method using the flux-based formulation with the adaptive meshing technique helps increasing the 
solution accuracy while reducing the unknowns as compared to the conventional method. 
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