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Abstract. Novel blends based on wheat gluten (WG) and epoxidized natural rubber (ENR) 
were fabricated with different ENR contents of 10, 20 and 30 wt% in an internal mixer. Sulfur 
vulcanization was used to crosslink the ENR phase in the blends. Comparatively, blends of 
WG and natural rubber (WG/NR) were prepared in the same condition as the WG/ENR blends. 
Tensile mechanical properties and impact strength of the WG/ENR blends were investigated 
and compared with the WG/NR blends as well as pure WG. Moreover, water absorption of 
pure WG and the WG/ENR blends was also tested. As investigated by scanning electron 
microscopy (SEM), the results revealed more compatibility between WG and ENR compared 
with NR. The elongation at break, impact strength and water resistance of the WG/ENR blends 
were found to remarkably increase with respect to the pure WG. Thus, incorporation of ENR 
into WG could improve toughness and water resistance of WG. Furthermore, the effect of 
adding glycerol acting as a plasticizer on the mechanical properties and impact strength of the 
WG/ENR blends was also studied. The blends with glycerol-plasticized WG (WG-Gly/ENR) 
showed more homogeneous morphologies and superior results in the mechanical properties and 
impact strength compared with the WG/ENR blends.    

1. Introduction 
During the past years, bio-based polymers from renewable natural resources have attracted much 
attention for academia and industry because of increasing environmental problems. Plant protein-
based biopolymers can serve as an alternative to conventional petroleum-based plastics because of 
their low cost, large-scale availability, nontoxic, and environmentally friendly properties. Compared 
with other plant proteins, the wheat gluten (WG) has a relative cheap cost, good stability to heat, 
strong tensile strength and excellent barrier properties [1-3]. However, major drawbacks of WG-based 
plastics to prevent them from a wide range of applications are their inherent brittleness and high water 
absorption after being processed. This is due to high degree of the three-dimensional protein network 
formed by heat-induced covalent crosslinking through disulfide bonds (S-S) of thiol groups (-SH) of 
cysteine residues in WG peptides and due to hydrophilic nature (polar amino acids) of the protein [4]. 
To improve the mechanical properties and water resistance of WG plastics, there are various 
approaches to expand its usefulness in an even wider variety of applications. Plasticizers are widely 
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used to add into WG for improving flexibility of the WG plastics. Such plasticizers include glycerol, 
sorbitol, sucrose, diethanolamine and triethanolamine, and saturated fatty acid [5-8]. However, these 
plasticizers do not improve the water resistance of the WG, except the later plasticizer. Blending WG 
with other polymers is one practical way to achieve new polymeric materials with tailor-made 
properties. Many polymers have been reported to blend with WG in order improve mechanical 
properties of the protein, for instance, aliphatic polyester [9], poly (hydroxyl ester ether) [10], 
polycaprolactone [11] and maleic anhydride-modified polycaprolactone [12], poly (vinyl alcohol) [2, 
13] and thiolated (vinyl alcohol) [14] and cassava starch [15].  

Epoxidized natural rubber (ENR) is a commercial modified natural rubber which is prepared by 
reacting natural rubber (NR) latex with peroxy acid. ENR possesses excellent elastic properties and 
toughness, high strength, oil resistance and adhesive properties, and a high degree of damping [16]. 
Epoxy groups in ENR would improve the polarity of rubber, thereby promoting compatibility with 
polar polymers in polymer blends. ENR is a promising material acting as toughening agent for many 
polymers. Some studies on blending of ENR to improve flexibility and impact strength have been 
reported with polystyrene (PS) [17], poly (vinyl chloride) (PVC) [18], nylon 6 [19], poly (ethylene-co-
acrylic acid) [20] and poly (lactic acid) (PLA) [21]. 

As noted above, many studies have reported blending WG with various thermoplastic polymers. 
However, based on our knowledge, there have been no reports on blending ENR elastomer into WG. 
Thus, the objective of this research is to fabricate a new WG/ENR blend which is expected to exhibit 
good flexibility, impact strength and water resistance with respect to pure WG plastic. In this work, 
mechanical properties, including tensile mechanical properties and impact strength, as well as water 
absorption of the blends were investigated. Comparison between WG/NR and WG/ENR blends was 
also described in terms of mechanical properties and morphology. Moreover, the effect of 
plasticization of WG by using glycerol as a plasticizer on mechanical properties, morphology and 
water resistance in the WG/ENR polymer blends is discussed in detail.    

2. Experimental 

2.1. Materials  
Wheat gluten (WG) was supplied by Zhangjiagang HengFeng Starch Products Co. Ltd., China. 
Natural rubber (NR) of STR 5L grade (Standard Thai Rubber 5 L) was purchased from PI Industry Co. 
Ltd., Thailand. Epoxidized natural rubber containing 50 mol% of epoxidation (ENR50) was produced 
by Muang Mai Guthrie Public Co. Ltd., Thailand. Glycerol (Gly) used as a plasticizer, was obtained 
from Fisher Scientific. In this work, conventional vulcanization (CV) was used to vulcanize ENR 
phase to enhance tensile strength properties of polymer blends. All chemicals for the conventional 
vulcanization in ENR including zinc oxide (ZnO), stearic acid (SA), tetramethylthiuram disulfide 
(TMTD), N-tert-butyl-2-benzothiazolesulfenamide (TBBS) and sulfur were used as received. Zinc 
oxide and stearic acid were used as activators, TMTD and TBBS were added as accelerators, and 
sulfur was used as a curing agent to vulcanize the rubber phase.    

2.2. Preparation of WG/ENR blends 
WG was dried in an oven at 80 °C for 24 hr to remove moisture before use. ENR was masticated in an 
internal mixer (Brabender W50EHT, Germany) at 70°C for 15 min with a rotating speed of 70 rpm. 
WG and the masticated ENR with various ratios of 100/0, 90/10, 80/20 and 70/30 by weight were 
mixed together in the internal mixer at 70°C with a rotating speed of 70 rpm for 10 min to prepare 
premixed blends. To prepare pre-vulcanized WG/ENR blends, all chemicals for curing ENR including 
zinc oxide (5 phr), stearic acid (1.5 phr), TMTD (0.4 phr), TBBS (0.6 phr) and sulfur (2.5 phr) were 
added sequentially into the premixed WG/ENR blends for 5 min for each chemical Moreover, to 
compare with the WG/ENR blends, the WG/NR blends were prepared at the same condition as 
described above. In order to study effect of a plasticizer on mechanical properties of the WG/ENR 
blends, a 20% of glycerol by weight based on WG was homogeneously mixed with WG for 5 min in 
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Philips Blender HR2115 to obtain glycerol-plasticized WG (WG-Gly) first. The WG-Gly was mixed 
with the masticated ENR to prepare the premixed WG-Gly/ENR blends and then followed by adding 
the curative agents into the WG-Gly/ENR blends at the same condition as described above. All blends 
were compression- molded at 150°C for 5 min at pressure of 1,500 psi by using LabTech compression 
molding machine to prepare sample specimens for mechanical property and water absorption testing. 

2.3. Mechanical property testing 

2.3.1. Tensile testing. A universal testing machine (Instron 5969) was used to investigate tensile 
properties according to ASTM D638-10 type IV. The tensile tests were conducted under ambient 
condition with a 5 kN load cell and the crosshead speed of 50 mm/min. At least ten specimens were 
performed for each blend.  

2.3.2. Izod impact testing. Izod impact testing, according to ASTM D256-10, was performed on 
notched impact specimens by using a pendulum impact tester (Zwick model B5102.202 Izod 
Pendulum 4 J). For each blend, fifteen specimens were tested and the average value of impact energy 
in kJ/m2 was recorded. 

2.4. Morphology  
Morphology studies of WG and the WG/ENR blends with different ratios were carried out using a 
scanning electron microscope (SEM; Hitachi Model S3400N instrument). Cryogenic fractured surface 
of the polymer blends were used to study the morphology of the blends coated with platinum.  

2.5. Water absorption testing 
All samples of WG and WG/ENR as well as WG-Gly/ENR blends with dimensions of 64.0 x 12.60 x 
2.00 mm were dried in an oven at 80°C for 24 hr to remove moisture in the specimens and the original 
weight of the samples was recorded. Then, the specimens were horizontally submerged in deionized 
water at a room temperature. At certain times of 5, 15, 25, 35, 50, 60, 120, 180, 240, 720, 1440 and 
2880 min, the specimens were taken out from water. The excess surface water was removed with a 
tissue and weight of the specimen was immediately measured as a function of time. Three replicates 
were measured for each material at each time point. The percentage of water absorption (%WA) was 
calculated as shown in equation (1).  

            % WA = [(Ws˗W0)/W0] x 100                                        (1) 

where Ws and W0 are weight of a specimen after submersion and before submersion, respectively.  

3. Results and discussion 
Generally, NR and ENR must be vulcanized to provide the better physical and mechanical properties 
for engineering application. From this reason, in this work, vulcanized NR and ENR by sulfur was 
used to improve tensile properties. Typically, rubbers can be vulcanized by two systems: sulfur-cured 
and peroxide-cured systems. The sulfur vulcanization provides high chain flexibility of the polymer 
network in the rubber phase due to formation of the mono, di and polysulphidic linkages (C-S-C, C-S-
S-C and C-Sx-C, respectively), which more stable than rigid C-C linkages in the peroxide 
vulcanization [18]. Moreover, in this work, the temperature used for mixing all vulcanizing chemicals 
and the premixed WG/ENR or WG/NR blends to prepare the pre-vulcanized blends in the internal 
mixer was 70°C. At this temperature, which is lower than a range of use temperature of sulfur to 
vulcanize the rubber (120-150°C), possible crosslinking accidents of ENR or NR phase in the blends is 
avoided during the mixing step.   

3.1. Comparison of WG/NR and WG/ENR blends 
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the large WG aggregates in the WG-Gly/ENR blends is because incorporation of glycerol acting as a 
plasticizer into WG led to not only a decrease in intermolecular forces, especially hydrogen bonding 
and electrostatic interactions, between protein chains but also an increase in polymer mobility in WG 
[23, 24], and thereby providing the better dispersion of WG in the ENR phase during the blending 
preparation. Therefore, plasticization of WG with glycerol is necessary in order to reduce size of WG 
aggregates in the blends, resulting in providing more homogeneous blends with respect to WG/ENR 
blends without plasticization. 

3.2.2. Mechanical Properties of the WG/ENR and WG-Gly/ENR blends. The tensile modulus, 
maximum tensile strength, elongation at break and notch Izod impact strength of pure WG, plasticized 
WG (WG-Gly) and all blends including the WG/ENR and WG-Gly/ENR blends with various ratios is 
shown in table 2. As expected, in the WG-Gly, the modulus and maximum tensile strength reduced 
while the elongation at break and impact strength increased with respect to pure WG. The reduction of 
the modulus and tensile strength in WG-Gly can be attributed to the fact is that glycerol acting as a 
plasticizer decreases the glass transition temperature (Tg) of WG, resulting in higher chain mobility of 
WG. Comparatively, it was found that the all tensile mechanical properties and impact strength of the 
WG-Gly/ENR blends were higher than of the WG/ENR blends. For instance, the tensile strength, 
elongation and impact strength of the WG-Gly/ENR blends at low ENR content of 10 wt% increased 
around 2, 4 and 2.5 times, respectively with respect to the WG/ENR blends at the same rubber content. 
This result indicated that the plasticization of WG by glycerol significantly enhanced the mechanical 
and impact properties of the WG-Gly/ENR blends compared to the blends without plasticization. It 
was well known the mechanical properties of polymer blends depend largely on the resulting the phase 
structure and morphologies of such blends. Hence, the improvement of the mechanical and impact 
properties of the WG-Gly/ENR blends resulting from size reduction of WG aggregates in the blends 
due to the plasticization effect of glycerol in WG as shown in the aforementioned SEM micrographs in 
figure 2. 

Table 2. Tensile properties and impact strength of WG/ENR and WG-Gly/ENR blends. 
Polymer blends Ratio 

(wt/wt) 
Modulus 
(MPa) 

Maximum 
Tensile strength 
(MPa) 

Elongation 
at break 
(%) 

Impact 
strength 
(kJ/m2) 

WG/ENR 100/0 1668.20 ±142.15 37.70 ± 3.54 1.76 ± 0.20 0.47 ± 0.13 

90/10 792.16 ± 42.29 8.83 ± 0.97 1.90 ± 0.19 1.88 ± 0.34 

80/20 286.40 ± 37.95 6.71 ± 0.55 20.30 ± 2.31 5.15 ± 0.21 

70/30 49.17 ± 8.74 4.56 ± 0.63 41.10 ± 3.97 8.34 ± 0.65 

WG-Gly/ENR 100/0 601.20 ± 48.34 20.92  ± 4.46 3.68 ± 0.34 1.54 ± 0.69 

90/10 508.82 ± 12.31 18.10 ± 1.24 7.91 ± 1.30 4.68 ± 0.23 

80/20 428.40 ± 29.20 14.61 ± 0.87 13.9 ± 1.52 10.53 ± 0.87 

70/30 96.25 ± 15.48 9.54 ± 0.99 29.6 ± 3.04 15.04 ± 0.59 

Figure 3 shows typical stress-strain curves of pure WG, glycerol-plasticized WG (WG-Gly) and the 
WG-Gly/ENR blends with different ENR contents. Obviously, compared to the WG-Gly/ENR blends, 
the WG-Gly showed more brittle fracture with high modulus and tensile strength but low elongation. 
In contrast, when the ENR was added into the plasticized WG, more ductility was observed. 
Considering areas under the stress-strain curves of all samples, it was found that the area under the 
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curve, correlated to toughness of the sample increased as the concentration of ENR in the blends, 
indicating that incorporation of elastomeric ENR into WG remarkably enhanced toughness in the 
polymer blends. 

 
Figure 3. Typical stress-strain curves of WG-Gly and the WG-Gly/ENR blends with 
different ENR contents. 

Figure 4. %Water absorption of a) WG/ENR blends and b) glycerol-plasticized WG/ENR 
blends. 

3.3. Water absorption property 
Water absorption of polymer blends is one of important properties for evaluating their stability on 
water affecting their long-term performance. The result of the percent water absorption (%WA) data of 
pure WG and the WG/ENR blends is illustrated in figure 4a, while %WA data of glycerol-plasticized 
WG (WG-Gly) and glycerol-plasticized blends (WG-Gly/ENR) is presented in figure 4b. From figure 
4a, it can be clearly seen that pure WG absorbed much more water than did the WG/ENR blends. 
During 2 days of the testing, WG absorbed 80% of its original weight in water, indicating very poor 
water resistance of the WG plastic whereas %WAs of the blends were lower than 70%. Thus, 
incorporation of ENR rubber into WG significantly improved the water resistance of the blends 
compared with that of the pure WG because ENR is the hydrophobic natural rubber, while WG has 
hydrophilic nature due to polar amino acids in WG structure, resulting in a high degree of water 
absorption. Considering the WG/ENR blends, %WAs of the blends with ratios of 90/10, 80/20 and 
70/30 were around 70, 40 and 20%, respectively. Thus, the water resistance of the blends increased 
with an increase of rubber content in the blends due to a presence of higher non-polar rubber content 
in the blends, thereby reducing water diffusion in the blends. In the case of the WG-Gly/ENR blends 
(figure 4b), a decrease in the water absorption as the rubber content was observed, similar to the result 
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of the WG/ENR blends. For comparison of %WA of the WG/ENR and the WG-Gly/ENR blends, the 
WG-Gly/ENR blends provided higher water absorption with respect to the WG/ENR blend without 
the plasticizer. This might be because hydrophilic hydroxyl groups in glycerol molecules can absorb 
water, resulting in a high degree of water absorption in the plasticized WG-Gly/ENR blends.   

4. Conclusions 
The WG/ENR and WG/NR blends with various weight ratios of 90/10, 80/20 and 70/30 were 
fabricated in this work. The ENR provided more compatibility with WG than did NR as shown in the 
SEM results. More compatibility of the WG/ENR blends led to higher mechanical properties and 
impact strength of with respect to the WG/NR blends. Moreover, the influence of addition of ENR on 
mechanical and impact properties, morphologies and water absorption of the blends were studied 
compared with the pure WG. Incorporation of ENR tremendously enhanced the elongation at break, 
impact strength and water resistance of the blends compared with the pure WG. On the other hand, 
modulus and maximum tensile strength decreased as an increase in ENR content. Hence, addition of 
ENR into WG led to an enhancement of the flexibility and water resistance in the blends with respect 
to pure WG. The effect of adding glycerol plasticizer to WG on the tensile mechanical properties, 
toughness and water absorption were also investigated with respect to the blends without plasticization. 
From the SEM micrographs, compared to the WG/ENR blends, it was found that the aggregate size of 
WG in the blends dramatically decreased and more homogeneous morphologies was observed in the 
WG-Gly/ENR blends. This is due to a plasticization effect, which reduced intermolecular forces, such 
as hydrogen bonding and electrostatic interactions between the protein chains. From this result, the 
mechanical properties and toughness of the WG-Gly/ENR blends were higher than those of the 
WG/ENR blends. However, the WG-Gly/ENR blends showed lower the water resistance than the 
blends without glycerol plasticization due to a presence of hydrophilic glycerol in the blends.  
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