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Abstract. Compromising between hydrophobicity and mechanical durability may be a feasible 
approach to fabricating usable anti-icing coatings. This work improves the contact angle of 
current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps 
relatively high mechanical durability. CeO2 microparticles and diluent were mixed with 
fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy 
composite substrates. The proportion of CeO2 microparticles and diluent influences the contact 
angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to 
diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy 
analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the 
surface of the coatings. 

1.  Introduction 
Superhydrophobic surfaces with the water contact angle higher than 150° and the sliding angle less 
than 10° have attracted much attention in the past ten years [1-3]. There are many superhydrophobic 
surfaces in nature, and the best well-known example is the lotus leaf with the water contact angle of up 
to 160° [4, 5]. The SEM pictures of the lotus surface showed that the combination of micrometer/ 
nanometer-scale roughness and epicuticular wax led to the superhydrophobic properties [6].  

Superhydrophobic surfaces can be used in a variety of fields such as anti-icing, waterproof, self-
cleaning, etc. Fabricating superhydrophobic surfaces includes two strategies: the one is constructing 
nano/microscale hierarchical structure on the intrinsic hydrophobic substrate, the other is modifying 
rough surface microstructures using low surface energy materials [7-9]. The common methods include 
template method [10], etching method [11], brush-coating [12], electrospinning technique [13], sol-gel 
method [14], layer-layer assembly [15-17], electrochemical deposition [2, 18, 19] etc.  

However, most methods either have complicated processes or need expensive materials and 
experimental apparatus [20]. Thus, this is not conducive to large-scale production. Besides, for 
hydrophobic coatings, their mechanical durability is usually very poor and easily abraded by external 
forces [21]. Recent studies show that rare-earth metal oxide has not only good hydrophobicity but also 
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durability properties [22]. CeO2 is one kind of rare-earth metal oxide and has never been utilized to 
fabricate anti-icing coatings. Within, we report a simple method to fabricate a mechanical durable anti-
icing coating by mixing CeO2 microparticles and diluent with fluorocarbon resin. This method is 
easily controlled, and the raw materials are cheap [12, 20]. Furthermore, the coatings have good 
mechanical durability and can be cured at room temperature. 

2.  Experimental 

2.1.  Materials and method 
Anti-icing coatings were made from the mixture of fluorocarbon resin (Obtained from Zhuzhou Times 
New Material Technology CO., LTD, China) with CeO2 microparticles (obtained from Ganzhou 
Goring High-tech material Corporation Limited, China) and diluent. Diluent is the mixture of 
dimethylbenzene and butyl acetate (the mass ratio of dimethylbenzene to butyl acetate is 6:4). The 
curing agent is isocyanate (the ratio of resin to curing agent is 5:1). The diameter of CeO2 
microparticles is 10 μm. 

Took 10 g fluorocarbon resin in the beaker, then diluent, CeO2 microparticles and isocyanate were 
added to it in order. Finally, the mixture was homogeneously mixed by an electromagnetic stirrer. 
Took a certain amount of the coatings to brush on the composite material substrates and cured at room 
temperature. 

We mainly studied the effects of the amount of CeO2 microparticles and diluent on the 
hydrophobic properties of the coatings. Firstly, we studied the effects of diluent. The experimental 
formulations are shown in table 1. 

Table 1. The experimental formulations of different amount of the diluent. 
No. Fluorocarbon resin (g) Isocyanate (g) Diluent (g) CeO2 microparticles (g) 

A1 10 2 2.5 5 

A2 10 2 5 5 

A3 10 2 10 5 

A4 10 2 20 5 

A5 10 2 30 5 

A6 10 2 40 5 

A7 10 2 50 5 

After finding the optimal amount of diluent based on the influence rules of which on the 
hydrophobic properties of the coatings, we changed the amount of CeO2 microparticles to study the 
effects on the hydrophobicity of the coatings. The experimental formulations are shown in table 2. 

Table 2. The experimental formulations of different amount of CeO2microparticles. 
No. Fluorocarbon resin (g) Isocyanate (g) Diluent (g) CeO2 microparticles (g) 

B1 10 2 10 1 

B2 10 2 10 3 

B3 10 2 10 5 

B4 10 2 10 8 

B5 10 2 10 10 

B6 10 2 10 15 

B7 10 2 10 20 
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Figure 1. SEM pictures of anti-icing coatings whose mass ratio of fluorocarbon resin to CeO2 

microparticles to diluent was 1:0.5:0.5. The scales of SEM pictures were 500 μm, 200 μm, 
100 μm and 50 μm for a, b, c and d, respectively. 

 
Figure 2. SEM pictures of anti-icing coatings whose mass ratio of fluorocarbon resin to CeO2 

microparticles to diluent was 1:0.5:2. The scales of SEM pictures were 500 μm, 200 μm, 100 
μm and 50 μm for a, b, c and d, respectively. 
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2.2.  Characterization 
The contact angle was measured by Standard Contact Angle Meter SL-200B (SHANGHAI SOLON 
INFORMATION TECHNOLOGY CO., LTD, China) in this work. A pipette was used to inject a 
water-drop on the surfaces of the coatings and the droplet formed a contact angle with the solid 
surface. The instrument was focalized to make the image of droplet showing on the screen clearly. 
After measuring the contact angle, the results were corrected by Elliptic Curve Method. Five different 
points of every sample were measured, and their averages were taken as the final results.  

A scanning electron microscopy (SEM) of Quanta-200 (FEI Company, USA) was utilized to verify 
the nano/microscale hierarchical structures of the coatings. The samples were gold-sputtered before 
scanning. And then they were fixed on the sample plate to take photos under the vacuum condition. 

3.  Results and discussion 

3.1.  Surface morphology of coatings 
Figures 1 and 2 display the results of SEM pictures of the obtained anti-icing coatings (the scales of 
SEM pictures are 500 μm, 200 μm, 100 μm and 50 μm, respectively). The mass ratio of fluorocarbon 
resin to CeO2 microparticles to diluents was 1:0.5:0.5. Figure 1 displays that the surface presented to 
be porous and the diameter of the micropore was about 10μm. The main substance of the surface was 
the cured rock-shaped resin and some bulges comprised of CeO2 microparticles were distributed on it. 
But the whole regularity was not good. The possible reason was the amount of resin was still large, 
and the CeO2 microparticles were resin-clad. 

In figure 2, the amount of diluent increased. The mass ratio of fluorocarbon resin to CeO2 
microparticles to diluent was 1:0.5:2. From the pictures, the surface still presented to be porous. An 
amount of chrysanthemum-shaped bulges were distributed on it. Nanoscale lamellar structures 
appeared on the tops of the chrysanthemum-shaped bulges. The combination of them constructed 
nano/microscale hierarchical structure. 

From figures 1 and 2, the porous structure of the coatings surface and the bulges comprised of 
CeO2 microparticles became clearer and clearer with the increase of the amount of diluent. When 
diluent increased, the resin in per unit volume of the coatings became less, the CeO2 microparticles 
would not be resin-clad and could well subside on the surface to comprise nano/microscale 
hierarchical structure. 

From figures 1 and 2, we also found that the CeO2 microparticles had different effects on the 
hydrophobicity of the coatings under the condition of two kinds of amounts of diluent. So we fixed the 
mass ratio of fluorocarbon resin to diluent to be 1:2, then changed the amount of CeO2 microparticles 
and observed the coatings microstructure. Under this condition, figure 3 shows the SEM pictures of 
anti-icing coatings whose mass ratio of fluorocarbon resin to CeO2 microparticles was 1:0.3 and 1:1, 
respectively. 

Figure 3 shows that the microstructures of these two samples were very similar. They both 
presented to be rough and had flower-shaped bulges comprised of CeO2 microparticles. The results 
demonstrate that the change of the amount of CeO2 microparticles has little effects on the coatings 
microstructure under this condition. 

3.2.  Hydrophobic properties of coatings 
The contact angles (CA) of the anti-icing coatings are shown in tables 3 and 4.The results in table 3 

indicate the influence rules of diluent on the hydrophobicity of the coatings. It shows that when the 
mass ratio of fluorocarbon resin to diluent was bigger than 1:1, the CA was less than 70°. While the 
mass ratio was 1:1, the CA significantly increased to 137.88° which indicated the coatings already had 
good hydrophobic properties. It is because when the ratio was bigger than 1:1, the surface of the 
substrate was mainly covered by resin, so the CeO2 microparticles could not construct rough surface. 
But when the mass ratio was less than 1:1, the amount of resin decreased. So the sedimentary CeO2 

microparticles which have hydrophobic properties formed the bulges and constructed the porous 
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chrysanthemum-shaped microstructure (shown in figure 2). As a result, the CA increased significantly. 
From table 3 we also found that when the mass ratio of fluorocarbon resin to diluent was less than 1:1, 
keeping adding diluent had little effects on the CA. 

 
Figure 3. SEM pictures of anti-icing coatings. For a and b, the mass ratio of fluorocarbon 
resin to CeO2 microparticles to diluent was 1:0.3:2. For c and d, the mass ratio was 1:1:2. The 
scales of SEM pictures were 50 μm, 20 μm, 50 μm and 20 μm for a, b, c and d, respectively. 

Figure 4. Water drop deposited on the anti-icing coatings surface: CA is 139.93. 

Table 4 displays the influence rules of CeO2 microparticles on hydrophobic properties of the 
coatings under the condition of high diluents concentration. The highest CA in table 4 is close to 140° 
of which the mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1(showed in 
figure 4). The influence of CeO2 microparticles on the hydrophobic properties is not significant. In fact, 
when the amount of diluent is large, the CeO2 microparticles can be easily homogenized in the 
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coatings to construct nano/microscale hierarchical structure, so changing the amount of CeO2 

microparticles has little effects. Also, the CA became less with the decrease of CeO2 microparticles. 
This is because when the particles decrease, there are fewer bulges on the coatings surface to construct 
nano/microscale hierarchical structure. 

Table 3. Contact angles of anti-icing coatings (the mass ratio of fluorocarbon resin to CeO2 

microparticles is 1:0.5). 
No. Mass ratio of resin to diluent CA (°) 

A1 1 : 0.25 69.03 

A2 1 : 0.5 65.40 

A3 1 : 1 137.88 

A4 1 : 2 136.45 

A5 1 : 3 134.19 

A6 1 : 4 138.62 

A7 1 : 5 133.06 

Table 4. Contact angles of anti-icing coatings (the mass ratio of fluorocarbon resin to diluent is 1:1). 

No. Mass ratio of resin to CeO2 microparticles CA（°） 

B1 1 : 0.1 130.71 

B2 1 : 0.3 131.93 

B3 1 : 0.5 134.52 

B4 1 : 0.7 128.11 

B5 1 : 1 131.91 

B6 1 : 1.5 139.93 

B7 1 : 2 138.82 

  
Recently, contact angles of most commercial anti-icing coatings for wind turbine blades are about 

110° and these coatings are usually very weak to resist mechanical contact. In this work, we obtained 
coatings of which the highest water contact angle was close to 140°. Besides, these coatings also had 
good mechanical durability in theory. 

4.  Conclusions 
This work presented a facile method of fabricating mechanical durable anti-icing coatings based on 
CeO2 microparticles that could be cured at room temperature. The SEM pictures indicate that the CeO2 

microparticles construct nano/microscale hierarchical structure on the surface of the coatings. The 
optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to 
the highest contact angle close to 140°, about 30° higher than commercial anti-icing coatings. 
Furthermore, these coatings can well resist mechanical contact theoretically. This method is simple 
and conducive to large-scale production. It will promote the hydrophobic surfaces to practical 
application in the future 
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